Skip to main content
Log in

Influence of heat treatment of CrO3-graphite intercalation compounds on subsequent electrochemical intercalation of sulphuric acid

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A sudden cathodic jump appearing on the potentiodynamic curves during subsequent electrochemical intercalation of 18 M sulphuric acid into chromium trioxide-graphite intercalation compounds (CrO3-GICs) is preserved for CrO3-GICs heated at a temperature lower than that of the decomposition of the intercalate, but vanishes completely after CrO3-GICs are thermally transformed into the physical mixture of graphite and lower chromium oxides. The results have shown that CrO3-GICs can be prepared, not only by the solvent method but also by the impregnation-dry method. Using a potentiodynamic technique involving the thermal modification of CrO3-GICs it has been possible to demonstrate the presence of an intercalation phase for CrO3-GICs which have unclear X-ray diffraction patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Hofmann and A. Frenzel, Z. Elektrochem. 37 (1931) 613.

    Google Scholar 

  2. H. Thiele, Z. anorg. allg. Chem. 206 (1932) 407.

    Google Scholar 

  3. N. Iwashita and M. Inagaki, Synth. Met. 34 (1989) 139.

    Google Scholar 

  4. M. Inagaki, N. Iwashita and E. Kouno, Carbon 28 (1990) 49.

    Google Scholar 

  5. J. M. Skowroński and K. Jurewicz, Synth. Met. 40 (1991) 161.

    Google Scholar 

  6. J. M. Skowroński, J. Douglade and A. Metrot, in ‘Materials Science Forum’ (edited by D. Tchoubar and J. Conard), Vols. 91–93, Trans. Tech Publications, Zürich (1992), pp. 659–664.

  7. N. Platzer and de la Martiniére, Bull. Soc. Chim. France 197 (1961).

  8. J.M. Skowroński, Electrochim. Acta 30 (1985) 989.

    Google Scholar 

  9. Idem, Carbon 24 (1986) 185.

    Google Scholar 

  10. Idem, Synth. Met. 22 (1987) 157.

    Google Scholar 

  11. Idem, Carbon 27 (1989) 537.

    Google Scholar 

  12. J. M. Skowroński and K. Jurewicz, J. Appl. Electrochem. 22 (1992) 535.

    Google Scholar 

  13. B. Kubota, J. Am. Ceram. Soc. 44 (1961) 239.

    Google Scholar 

  14. L. B. Ebert, R. A. Huggins and J. I. Brauman, Carbon 12 (1974) 199.

    Google Scholar 

  15. J. G. Hooley and M. Reimer, ibid. 13 (1975) 401.

    Google Scholar 

  16. W. Metz and H. Meyer-Spasche, Synth. Met. 1 (1979/80) 53.

    Google Scholar 

  17. J. M. Skowroński, J. Thermal Anal. 34 (1988) 989.

    Google Scholar 

  18. Idem, Carbon 26 (1988) 613.

    Google Scholar 

  19. T. Kobayashi, H. Kurata and Uyeda, N., J. Phys. Chem. 90 (1986) 2231.

    Google Scholar 

  20. J. M. Skowroński, Synth. Met. 55–57 (1993) 1447.

    Google Scholar 

  21. J. O. Besenhard, E. Wudy, H. Möhhwald, J. J. Nickl, W. Biberacher and W. Foag, ibid. 7 (1983) 185.

    Google Scholar 

  22. A. Metrot and H. Fuzellier, Carbon 22 (1984) 131.

    Google Scholar 

  23. H. Shioyama and R. Fuji, ibid. 25 (1987) 771.

    Google Scholar 

  24. J. M. Skowroński, Electrochim. Acta 32 (1987) 1285.

    Google Scholar 

  25. Idem, ibid. 33 (1988) 953.

    Google Scholar 

  26. L. B. Ebert and J. C. Scanlon, Carbon 25 (1987) 437.

    Google Scholar 

  27. Idem, ibid. 28 (1990) 253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skowroński, J.M. Influence of heat treatment of CrO3-graphite intercalation compounds on subsequent electrochemical intercalation of sulphuric acid. J Appl Electrochem 24, 245–249 (1994). https://doi.org/10.1007/BF00242891

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242891

Keywords

Navigation