Skip to main content
Log in

Surface activation of Li2MnO3 phase by glacial acetic acid induces spinel-like phase for higher electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The surface activation treatment of Li-rich materials with glacial acetic acid (GAA, a unitary organic weak acid) has been systematically investigated. The experiments demonstrated that glacial acetic acid can effectively activate the Li2MnO3 phase, and the activation process is mild and convenient. The glacial acetic acid treatment can modify the material particle distribution and make it more loosely distributed, which helps to improve the contact efficiency between the cathode material and the electrolyte. Moreover, the minor amount of spinel-like phase produced after glacial acetic acid treatment helps to delay the phase transition of the Li-rich material from a lamellar to a spinel-like phase structure during long cycling, thus suppressing the voltage decay. Especially, the sample GAA 2 h treated with glacial acetic acid for 2 h had a specific capacity of 273.0 mAh/g at 0.1 C with a first-coulomb efficiency of 79.87%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benedek R, van de Walle A (2008) Free energies for acid attack reactions of lithium cobaltate. J Electrochem Soc 155:A711

    Article  CAS  Google Scholar 

  2. Uzelac M, Mastropierro P, Tullio M, Borilovic I, Tarrés M, Kennedy AR, Aromí G, Hevia E (2021) Tandem Mn–I exchange and homocoupling processes mediated by a synergistically operative lithium manganate. Angew Chem Int Ed 60:3247–3253

    Article  CAS  Google Scholar 

  3. Paolella A, Faure C, Bertoni G, Marras S, Guerfi A, Darwiche A, Hovington P, Commarieu B, Wang Z, Prato M, Colombo M, Monaco S, Zhu W, Feng Z, Vijh A, George C, Demopoulos GP, Armand M, Zaghib K (2017) Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat Commun 8:14643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia Y, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452

    Article  CAS  Google Scholar 

  5. Hawley WB, Meyer HM, Li J (2021) Enabling aqueous processing for LiNi0.80Co0.15Al0.05O2 (NCA)-based lithium-ion battery cathodes using polyacrylic acid, Electrochimica Acta. 380:138203

  6. Rozier P, Tarascon JM (2015) Review—Li-rich layered oxide cathodes for next-generation li-ion batteries: chances and challengeS. J Electrochem Soc 162:A2490–A2499

    Article  CAS  Google Scholar 

  7. Shobana MK (2019) Metal oxide coated cathode materials for Li ion batteries—a review. J Alloy Compd 802:477–487

    Article  CAS  Google Scholar 

  8. Şahan H, Göktepe H, Patat S , Yıldız AS, Özdemir B, Ülgen A, Mukerjee S, Abraham KM (2019) Effect of silver coating on electrochemical performance of 0.5Li2MnO3.0.5 LiMn1/3Ni1/3Co1/3O2 cathode material for lithium-ion batteries, J Solid State Electrochem. 23:1593–1604

  9. Wang F, Chang Z, Wang X, Wang Y, Chen B, Zhu Y, Wu Y (2015) Composites of porous Co3O4 grown on Li2MnO3 microspheres as cathode materials for lithium ion batteries. J Mater Chem A 3:4840–4845

    Article  CAS  Google Scholar 

  10. Wang M-J, Shao A-F, Yu F-D, Sun G, Gu D-M, Wang Z-B (2019) Simple water treatment strategy to optimize the Li2MnO3 activation of lithium-rich cathode materials. ACS Sustainable Chem Eng 7:12825–12837

    Article  CAS  Google Scholar 

  11. Vivekanantha M, Partheeban T, Kesavan T, Senthil C, Sasidharan M (2019)Alleviating the initial coulombic efficiency loss and enhancing the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 using β-MnO2, Applied Surface Science. 489:336–345

  12. Yao X, Hu Y, Su Z (2017) Effects of acid treatment on electrochemical properties of Li2MnO3·LiNi0.5Co0.45Fe0.05O2 cathode materials, Chem. Pap. 71:2465–2471

  13. Lee M.-J Lho E, Oh P, Son Y, Cho J (2017) Simultaneous surface modification method for 0.4Li2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries: acid treatment and LiCoPO4 coating. Nano Res 10:4210–4220

  14. Ramakrishnan S, Park B, Wu J, Yang W, McCloskey BD (2020) Extended interfacial stability through simple acid rinsing in a Li-rich oxide cathode material. J Am Chem Soc 142:8522–8531

    Article  CAS  PubMed  Google Scholar 

  15. Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X (2019) In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 61:119–125

    Article  CAS  Google Scholar 

  16. Xu G, Li J, Xue Q, Ren X, Yan G, Wang X, Kang F (2014) Enhanced oxygen reducibility of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material with mild acid treatment, J Power Sources. 248:894–899

  17. Kang S-H, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3⋅0.5 LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153:A1186

  18. Vivekanantha M, Senthil C, Kesavan T, Partheeban T, Navaneethan M, Senthilkumar B, Barpanda P, Sasidharan M (2019) Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: influence of temperature over structural and electrochemical properties, Electrochimica Acta 317 :398–407

  19. Tang T, Zhang HL (2016) Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0.2Ni0.15Mn0.55Co0.1-xAlx]O2, Electrochimica Acta 191:263–269

  20. Song C, Feng W, Wang X, Shi Z (2020) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with bamboo essential oil. Ionics 26:661–672

  21. Alagar S, Karuppiah C, Madhuvilakku R, Piraman S, Yang C.-C (2019) Temperature-controlled synthesis of Li- and Mn-rich Li1.2Mn0.54Ni0.13Co0.13O2 hollow nano/sub-microsphere electrodes for high-performance lithium-ion battery, ACS Omega. 4:20285–20296

  22. Zhou L, Yin Z, Tian H, Ding Z, Li X, Wang Z, Guo H (2018) Spinel-embedded and Li3PO4 modified Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for high-performance Li-ion batteries, Applied Surface Science. 456:763–770

  23. Li S, Ji J, Li Z, Yan L, Jiang W, Ling M, Lin Z, Liang C (2020) Pre-activation and defects introduced via citric acid to mitigate capacity and voltage fading in Li-rich cathode. Z Anorg Allg Chem 646:1285–1291

    Article  CAS  Google Scholar 

  24. Li B, Zhang D, Li G, Fan J, Chen D, Ge Y, Li L (2019) Heat-treatment-assisted molten-salt strategy to enhance electrochemical performances of Li-rich assembled microspheres by tailoring their surface features. Chem Eur J 25:2003–2010

    Article  CAS  PubMed  Google Scholar 

  25. Song C, Feng W, Shi Z, Wang X (2019) Effect of drying temperature on properties of lithium-rich manganese-based materials in sol-gel method. Ionics 25:4607–4614

    Article  CAS  Google Scholar 

  26. Chen H, Zhang Z, Hu D, Chen C, Zhang Y, He S, Wang J (2021) Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst. Chemosphere 265:129047

    Article  CAS  PubMed  Google Scholar 

  27. Andrews NLP, Fan JZ, Forward RL, Chen MC, Loock H-P (2017) Determination of the thermal, oxidative and photochemical degradation rates of scintillator liquid by fluorescence EEM spectroscopy. Phys Chem Chem Phys 19:73–81

    Article  CAS  Google Scholar 

  28. Ishida N, Tamura N, Kitamura Idemoto NY (2016) Crystal and electronic structure analysis and thermodynamic stabilities for electrochemically or chemically delithiated Li1.2−xMn0.54Ni0.13Co0.13O2, J Power Sources. 319:255–261

  29. Zhang P, Zhai X, Huang H, Zhou J, Li X, He Y, Guo Z (2020) Synergistic Na+ and F− co-doping modification strategy to improve the electrochemical performance of Li-rich Li1.20Mn0.54Ni0.13Co0.13O2 cathode, Ceramics International. 46:24723–24736

  30. Liu Y, He B, Li Q, Liu H, Qiu L, Liu J, Xiang W, Liu Y, Wang G, Wu Z, Guo X (2020) Relieving capacity decay and voltage fading of Li1.2Ni0.13Co0.13 Mn0.54O2 by Mg2+ and PO43- dual doping, Materials Research Bulletin. 130:110923

  31. Li H, Jian Z, Yang P, Li J, Xing Y, Zhang S (2020) Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance, Ceramics International. 46:23773–23779

  32. Zhang X, Liu G, Zhou K, Jiao T, Zou Y, Wu Q, Chen X, Yang Y, Zheng J (2021) Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine. Energy Mater 1:100005

  33. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochimica Acta 85:411–422

  34. West WC, Soler J, Ratnakumar BV (2012) Preparation of high quality layered-layered composite Li2MnO3–LiMO2 (M=Ni, Mn, Co) Li-ion cathodes by a ball milling–annealing process. J Power Sources 204:200–204

    Article  CAS  Google Scholar 

  35. Xu L, Meng J, Yang P, Xu H, Zhang S (2021) Cesium-doped layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with enhanced electrochemical performance. Solid State Ionics 361:115551

  36. Çetin B, Camtakan Z, Yuca N (2020) Synthesis and characterization of Li-rich cathode material for lithium ion batteries. Mater Lett 273:127927

    Article  Google Scholar 

  37. Zhang X, Yin Y, Hu Y, Wu Q, Bai Y (2016) Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li [Li0.2Ni0.17Co0.07Mn0.56]O2, Electrochimica Acta 193:96–103

  38. Li L, Chang YL, Xia H, Song BH, Yang JR, Lee KS, Lu L (2014) NH4F surface modification of Li-rich layered cathode materials. Solid State Ionics 264:36–44

    Article  CAS  Google Scholar 

  39. Seteni B, Rapulenyane N, Ngila JC, Mpelane S, Luo H (2017) Coating effect of LiFePO 4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries, J Power Sources 353:210–220

  40. Zheng F, Ou X, Pan Q, Xiong X, Yang C, Liu M (2017) The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J Power Sources 346:31–39

  41. Yang Z, Zheng C, Wei Z, Zhong J, Liu H, Feng J, Li J, Kang F (2022) Multi-dimensional correlation of layered Li-rich Mn-based cathode materials. Energy Mater 2:200006

    Google Scholar 

  42. Iturrondobeitia A, Kvasha A, Lopez del Amo J-M, Colin JF, Sotta D, Urdampilleta I, Casas-Cabanas M (2017) A comparative study of aqueous and organic processed Li1.2Ni0.2Mn0.6O2 Li-rich cathode materials for advanced lithium-ion batteries. Electrochimica Acta. 247:420–425

  43. Chen N, Li H, Dai Y, Miao Y, Xiong W, Wang L, Tong M, Yang J, Huang B, Li W, Li H (2021) Mechanism and properties of rod-like Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by β-MnO2 template for advanced Li-ion batteries, Journal of Alloys and Compounds. 867:158935

  44. Lengyel M, Atlas G, Elhassid D, Luo PY, Zhang X, Belharouak I, Axelbaum RL (2014) Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis. J Power Sources 262:286–296

  45. Ma D, Li Y, Zhang P, Cooper AJ, Abdelkader AM, Ren X, Deng L (2016) Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries, J Power Sources. 311:35–41

  46. Meng J, Wang Z, Xu L, Xu H, Zhang S, Yan Q (2017) Enhanced structural stability and improved electrochemical performance of layered lithium-rich cathode materials via tellurium doping. J Electrochem Soc 164:A2594–A2602

    Article  CAS  Google Scholar 

  47. Makhonina EV, Maslennikova LS, Volkov VV, Medvedeva AE, Rumyantsev AM, Koshtyal YuM, Maximov MYu, Pervov VS, Eremenko IL (2019) Li-rich and Ni-rich transition metal oxides: coating and core-shell structures. Appl Surf Sci 474:25–33

    Article  CAS  Google Scholar 

  48. Han D, Park K, Park J-H, Yun D-J, Son Y-H (2018) Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries. J Ind Eng Chem 68:180–186

    Article  CAS  Google Scholar 

  49. Zhang J, Cao Y, Ou X, Zhang J, Wang C, Peng C, Zhang B, Tian Y (2019) Constituting the NASICON type solid electrolyte coated material forming anti-high voltage system to enhance the high cut-off voltage performance of LiNi0.6Co0.2Mn0.2O2 via charge attracts electrostatic assembly. J Power Sources. 436:226722

  50. Sun S, Yin Y, Wan N, Wu Q, Zhang X, Pan D, Bai Y, Lu X (2015) AlF3 Surface-coated Li [Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. Chem Sus Chem 8:2544–2550

  51. Luo Q, Xie Y, Wu Z, Xie Q, Yan D, Zou H, Yang W, Chen S (2021) Facile molten vanadate-assisted surface treatment strategy for Li2MnO3 activation of Li-rich cathode materials. ACS Appl Energy Mater 4:4867–4878

    Article  CAS  Google Scholar 

  52. Lee E-S, Manthiram A (2014) Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J Mater Chem A 2:3932

    Article  CAS  Google Scholar 

  53. Song B, Zhou C, Wang H, Liu H, Liu Z, Lai MO, Lu L (2014) Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries. J Electrochem Soc 161:A1723–A1730

    Article  CAS  Google Scholar 

  54. Venkateswara Rao C, Soler J, Katiyar R, Shojan J, West WC, Katiyar RS (2014) Investigations on electrochemical behavior and structural stability of Li1.2Mn0.54Ni0.13Co0.13O2 lithium-ion cathodes via in-situ and ex-situ Raman spectroscopy. J Phys Chem C 118:14133–14141

  55. Oh P, Oh S, Li W, Myeong S, Cho J, Manthiram A (2016) High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv Sci 3:1600184

    Article  Google Scholar 

  56. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Sun C, Zhang G, Wu Z (2020) Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials. J Power Sources 462:228185

    Article  CAS  Google Scholar 

  57. Yang S, Wei H, Tang L, Yan C, Li J, He Z, Li Y, Zheng J, Mao J, Dai K (2021) Fast Li-ion conductor Li1+yTi2-yAly(PO4)3 modified Li1.2 [Mn0.54Ni0.13Co0.13]O2 as high performance cathode material for Li-ion battery Ceram Int 47:18397–18404

  58. Huang Z, Wang X, Feng W, Li W, Shi Z, Lei Z (2021) Effect of sintering temperature on the electrochemical performance of Li-rich Mn-basfed cathode material Li1.2Mn0.54Ni0.13Co0.13O2 by co-precipitation method J Electroanal Chem 895:115439

  59. Rastgoo-Deylami M, Javanbakht M, Omidvar H (2019) Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2. Solid State Ionics 331:74–88

  60. Luo Z, Zhou Z, He Z, Sun Z, Zheng J, Li Y (2021) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La–Co–O compound Ceram Int 47:2656–2664

  61. Wu Z-L, Xie H, Li Y, Zhang F, Wang Z, Zheng W, Yang M, Xu Z, Lu Z (2020) Li1.2Ni0.25Mn0.55O2: a high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure. J Alloys Compds 827:154202.

  62. Breddemann U, Erickson EM, Davis V, Schipper F, Ellwanger M, Daub M, Hoffmann A, Erk C, Markovsky B, Aurbach D, Krossing I (2019) Fluorination of Li-rich lithium-ion-battery cathode materials by fluorine gas: chemistry, characterization, and electrochemical performance in half cells. ChemElectroChem 6:3337–3349

    Article  CAS  Google Scholar 

  63. He H, Zan L, Zhang Y (2016) Effects of amorphous V2O5 coating on the electrochemical properties of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion batteries. J Alloys Compd 680:95–104

  64. Wang C, Zhou F, Chen K, Kong J, Jiang Y, Yan G, Li J, Yu C, Tang W-P (2015) Electrochemical properties of α-MoO3-coated Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. Electrochimica Acta 176:1171–1181.

  65. Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochimica Acta 135"199–207

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No.21965019), HongLiu First-class Disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangjun Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3170 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Feng, W. & Huang, Z. Surface activation of Li2MnO3 phase by glacial acetic acid induces spinel-like phase for higher electrochemical performance. J Solid State Electrochem 26, 2685–2698 (2022). https://doi.org/10.1007/s10008-022-05268-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05268-x

Keywords

Navigation