Skip to main content
Log in

Anion incorporation and its effect on the dielectric constant and growth rate of zirconium oxides

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mechanically polished zirconium electrodes were potentiodynamically polarized in phosphate buffer solutions of various pH values and in 0.5 lvl NaOH. The results show that the shape of the I-E curves is independent of the solution pH. At relatively low scan rates, oxygen gas evolution was observed. The oxide film thickness was calculated from the values of the charge consumed in the anodic process assuming 100% current efficiency for oxide formation below oxygen evolution (lower values for the current efficiency are assumed for potentials above oxygen evolution). Capacitance measurements, together with the calculated oxide thickness, were used to estimate values for the dielectric constant of the oxide. Two different values of the dielectric constant were obtained for the oxides formed in the range of potential below and above oxygen evolution. Also, higher dielectric constant values were obtained with increasing solution pH. Anion incorporation was assumed to increase the conductivity of the oxide films and, hence, decrease the dielectric constant. A two-layer structure is proposed for the anodically formed oxide on zirconium in aqueous solutions; an anion-free layer near the metal and an outer layer containing the incorporated anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, Pergamon Press, London (1966) p. 223.

    Google Scholar 

  2. T. P. Bondareva and V. M. Novakovskii, Zashch. Metal. 6 (l970) 207.

    Google Scholar 

  3. F. F. Faizullin and N. D. Mazurenko, Issled. Elektrokhim., Magnetokhim. Metod. Anal., no. 2 (1969) 136.

    Google Scholar 

  4. G. Kalyani, A. Pansa Reddy and K. S. Sastry, Z. Phys. Chem. 269 (1988) 201.

    Google Scholar 

  5. G. Kalyani and K. S. Sastry, Bull. Electrochem. 7 (1991) 22.

    Google Scholar 

  6. E. M. Patrito and V. A. Macagno, J. Electroanal. Chem. 371 (1994) 59.

    Google Scholar 

  7. Idem, J. Electrochem. Soc. 140 (1993) 1576.

    Google Scholar 

  8. J. L. Whitton, J. Electrochem. Soc. 115 (1968) 59.

    Google Scholar 

  9. J. A. Davies, B. Komeij, T. P. S. Pringle and F. Browm, ibid. 112 (1965) 675.

    Google Scholar 

  10. J. S. L. Leach and B. R. Pearson, Corros. Sci. 28 (1988) 43.

    Google Scholar 

  11. J. S. L. Leach and B. R. Pearson, Electrochim. Acta 29 (1984) 1263.

    Google Scholar 

  12. J. S. L. Leach and C. N. Panagopoulos, ibid. 31 (1986) 1577.

    Google Scholar 

  13. J. A. Bardwell and M. C. H. McKubre, ibid. 36 (1991) 647.

    Google Scholar 

  14. J. S. L. Leach and B. R. Pearson, ibid. 29 (1984) 1271.

    Google Scholar 

  15. J. C. Banter, J. Electrochem. Soc. 114 (1967) 508.

    Google Scholar 

  16. J. S. L. Leach, C. N. Panagopoulos and B. R. Pearson, The Electrochemical Society Extended Abstracts, Minneapolis, MN, 10–15 May (1981), Abstract 28, p. 91; J. S. L. Leach and C. Panagopoulos, 32nd ISE Meeting, Cavat, September (1981), Extended Abstracts, vol. II p. 1002.

  17. N. Magnussen, L. Quinones, D. L. Cocke, E. A. Schweikert, B. K. Patnaik, C. V. Barros Leite and G. B. Baptista, Thin Solid Films 167 (1988) 245.

    Google Scholar 

  18. E. M. Patrito and V. A. Macagno, J. Electroanal. Chem. 375 (1994) 203.

    Google Scholar 

  19. M. W. Khalil, M. A. Abdel Rahim, Mat-wiss.u. Werkstofftech. 22 (1991) 260.

    Google Scholar 

  20. J. S. L. Leach and B. R. Pearson, Proceedings of the 7th International Congress on Metallic Corrosion, Rio de Janeiro, ABRACO (1978) p. 151.

    Google Scholar 

  21. G. T. Rogers, P. H. G. Draper and S. S. Wood, Electrochim. Acta 13 (1968) 251.

    Google Scholar 

  22. I. A. Ammar, S. Darwish and M. W. Khalil Z. Werkst. tech. 12 (1981) 421.

    Google Scholar 

  23. S. Darwish, M. W. Khalil, M. A. Abdel Rahim and I. A. Ammar, Mat-wiss.u. Werkstofftech. 20 (1989) 299.

    Google Scholar 

  24. T. Shibata and M. A. M. Ameer, Denki Kagaku 60 (1992) 494.

    Google Scholar 

  25. N. D. Mazurenko and F. F. Faizulline, Sb. Aspir. ab., Kazan. Gos. Univ., Khim., Geogr., Geol. (1970) 16–19.

  26. E. M. Patrito, R., Torresi, E. P. M. Leiva and V. A. Macagno, J. E1ectrochem. Soc. 137 (1990) 524.

    Google Scholar 

  27. P. Meisterjahn, H. W., Hoppe and J. W. Schultze, J. Electroanal. Chem. Interfacial Electrochem. 217 (1987) 159.

    Google Scholar 

  28. L. Young, Proc. R. Soc. Lond. A 244 (1958) 41.

    Google Scholar 

  29. F. Di Quarto, A. Di Paola and C. Sunseri, J. E1ectrochem. Soc. 127 (1980) 1016.

    Google Scholar 

  30. J. J. Randall, W. J. Bernard and R. R. Wilkinson, Electrochim. Acta 10 (1965) 183.

    Google Scholar 

  31. M. S. El-Basiouny, A. A. Mazhar, F. El-Taib and M. A. Ameer, J. E1ectroanal. Chem. Interfacial Electrochem. 147 (1983) 181.

    Google Scholar 

  32. H. Takahashi, K. Fujimoto and M. Nagashama, J. Electrochem. Soc. 135 (1988) 1349.

    Google Scholar 

  33. I. Montero, J. M. Albella and J. M. Martinez-Duart, ibid. 132 (1985) 976.

    Google Scholar 

  34. A. Clearfield, Inorg. Chem. 3 (1964) 146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel Rahim, M.A., Abdel Rahman, A.A. & Khalil, M.W. Anion incorporation and its effect on the dielectric constant and growth rate of zirconium oxides. J Appl Electrochem 26, 1037–1043 (1996). https://doi.org/10.1007/BF00242198

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242198

Keywords

Navigation