Skip to main content
Log in

Calcium uptake in preterminal central synapses: Importance of mitochondria

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Energy dependent 45Ca2+ uptake in the synaptosomal preparation from guinea pig cortex has been investigated. 45Ca2+ uptake was stimulated by ATP, the absolute value of uptake being dependent on the extent of synaptosomal disruption caused by osmotic shock. A quantitative comparison of microsomal and mitochondrial ATP-dependent 45Ca2+ uptake showed that only mitochondria had a large enough capacity to account for the Ca uptake levels observed in the synaptosomal preparation. ATP-stimulated 45Ca2+ uptake in mitochondria, ‘intact’ and ‘shocked’ synaptosomes was inhibited by atractyloside, DNP, oligomycin and ruthenium red but unaffected by antimycin A and rotenone. This was interpreted as evidence that mitochondria were responsible for ATP-dependent synaptosomal Ca2+ uptake, the increase in uptake seen on osmotic lysis being due to the deocclusion of intraterminal mitochondria. Synaptosomal and mitochondrial 45Ca2+ uptake was also stimulated by the mitochondrial respiratory substrate glutamate; this uptake was sensitive to antimycin A, DNP, rotenone and ruthenium red but insensitive to atractyloside or oligomycin thus indicating it was of mitochondrial origin. No change in glutamate-dependent 45Ca2+ uptake was seen on osmotic lysis of the synaptosomes as the expected increase due to the release of occluded mitochondria was counterbalanced by the damaging effect of hypo-osmotic shock on the glutamate-stimulated 45Ca2+ uptake process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnaes, E., Rahamimoff, R.: On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. (Lond.) 248, 285–306 (1975)

    Google Scholar 

  • Baker, P.F.: Transport and metabolism of calcium ions in nerve. Progr. Biophys. molec. Biol. 24, 179–223 (1972)

    Google Scholar 

  • Blaustein, M.P.: The interrelationship between sodium and calcium fluxes across membranes. Rev. Physiol. Biochem. Pharmacol. 70, 34–83 (1974)

    Google Scholar 

  • Blaustein, M.P.: Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J. Physiol. (Lond.) 247, 617–655 (1975)

    Google Scholar 

  • Blaustein, M.P., Johnson, E.M., Jr., Needleman, P.: Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro. Proc. nat. Acad. Sci. (Wash.) 69, 2237–2240 (1972)

    Google Scholar 

  • Blaustein, M.P., Goldring, J.M.: Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffussion potentials. J. Physiol. (Lond.) 247, 589–615 (1975)

    Google Scholar 

  • Blaustein, M.P., Oborn, C.J.: The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro. J. Physiol. (Lond.) 247, 657–686 (1975)

    Google Scholar 

  • Böhme, G., Lutz, E.G., Pollak, K.-H., Winter, O., Thews, J., Kassebaum, L.: Zur energiebedürftigen Ca2+-Akkumalation in Mitochondrien aus Rattenhirn. J. Neurochem. 21, 1509–1516 (1973)

    Google Scholar 

  • Bradford, H.F., Bennett, G.W., Thomas, A.J.: Depolarising stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes. J. Neurochem. 21, 495–505 (1973)

    Google Scholar 

  • Carafoli, E.: Mitochondrial uptake of calcium ions and the regulation of cell function. Biochem. Soc. Symposium 39, 89–109 (1974)

    Google Scholar 

  • Carafoli, E., Rossi, C.S.: Calcium transport in mitochondria. Advanc. Cytopharmacol. 1, 209–227 (1971)

    Google Scholar 

  • Carsten, M.E., Mommaerts, W.F.H.: The accumulation of calcium ions by sarcotubular vesicles. J. gen. Physiol. 48, 183–197 (1964)

    Google Scholar 

  • Cooperstein, S.J., Lazarow, A.: A microspectrophotometric method for the determination of cytochrome oxidase. J. biol. Chem. 189, 665–670 (1951)

    Google Scholar 

  • De Belleroche, J.S., Bradford, H.F.: Stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence. J. Neurochem. 19, 1817–1820 (1972)

    Google Scholar 

  • De Meis, I., Rubin-Altschul, B.M., Machado, R.D.: Comparative data of calcium transport in brain and skeletal muscle microspmes. J. biol. Chem. 245, 1883–1889 (1973)

    Google Scholar 

  • Diamond, L., Goldberg, A.L.: Uptake and release of 45Ca by brain microsomes, synaptosomes and synaptic vesicles. J. Neurochem. 18, 1419–1431 (1971)

    Google Scholar 

  • Kamino, K., Uyesaka, N., Inouye, A.: Calcium binding of synaptosomes isolated from rat brain cortex. I. Effects of high external potassium ions. J. Membrane Biol. 17, 13–26 (1974)

    Google Scholar 

  • Katz, B., Miledi, R.: A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967)

    Google Scholar 

  • Katz, B., Miledi, R.: Tetrodotoxin resistant electrical activity in presynaptic terminals. J. Physiol. (Lond.) 203, 459–487 (1969)

    Google Scholar 

  • Katz, B., Miledi, R.: Further study of the role of calcium in synaptic transmission. J. Physiol. (Lond.) 207, 789–802 (1970)

    Google Scholar 

  • Lazarewicz, J.W., Haljamäe, H., Hamberger, A.: Calcium metabolism in isolated brain cells and subcellular fractions. J. Neurochem. 22, 33–45 (1974)

    Google Scholar 

  • Lehninger, A.L., Carafoli, E., Rossi, C.S.: Energy-linked ion movements in mitochondrial systems. Advanc. Enzymol. 29, 259–320 (1967)

    Google Scholar 

  • Llinás, R., Blinks, J.R., Nicholson, C.: Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin, Science 176, 1127–1129 (1972)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    CAS  PubMed  Google Scholar 

  • Luft, J.H.: Fine structure of nerve and muscle cell membrane permeability to ruthenium red. Anat. Rec. 154, 379–380 (1966)

    Google Scholar 

  • Lust, W.D., Robinson, J.D.: Calcium accumulation by isolated nerve ending particles. I. The site of energy dependent accumulation. J. Neurobiol. 1, 303–316 (1970a)

    Google Scholar 

  • Lust, W.D., Robinson, J.D.: Calcium accumulation by isolated nerve ending particles. II. Factors influencing calcium movements. J. Neurobiol. 1, 317–328 (1970b)

    Google Scholar 

  • Madeira, V.M.C., Antunes-Madeira, M.C.: Interaction of Ca2+ and Mg2+ with synaptic plasma membranes. Biochem. Biophys. Acta 323, 396–407 (1973)

    Google Scholar 

  • Miledi, R.: Transmitter release induced by injection of calcium ions into nerve terminals. Proc. roy. Soc. B 183, 421–425 (1973)

    Google Scholar 

  • Miller, E.K., Dawson, R.M.C.: Can mitochondria and synaptosomes of guinea pig brain synthesize phospholipids? Biochem. J. 126, 805–812 (1972)

    Google Scholar 

  • Moore, C.L.: Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem. biophys. Res. Commun. 42, 298–305 (1971)

    Google Scholar 

  • Robinson, J.D., Lust, W.D.: Adenosine triphosphate-dependent calcium accumulation by brain microsomes. Arch. Biochem. 125, 286–294 (1968)

    Google Scholar 

  • Rossi, C.S., Lehninger, A.L.: Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. biol. Chem. 239, 3971–3980 (1964)

    Google Scholar 

  • Swanson, P.D., Anderson, L., Stahl, W.L.: Uptake of calcium ions by synaptosomes from rat brain. Biochem. Biophys. Acta 356, 174–183 (1974)

    Google Scholar 

  • Vale, M.P., Carvalho, A.P.: Effects of ruthenium red on Ca2+ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle. Biochem. Biophys. Acta 325, 29–37 (1972)

    Google Scholar 

  • Vasington, F.D., Gazotti, P., Tiozzo, R., Carafoli, E.: The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria. Biochem. Biophys. Acta 256, 45–54 (1972)

    Google Scholar 

  • Whittaker, V.P.: The biochemistry of synaptic transmission. Naturwissenschaften 60, 281–289 (1973)

    Google Scholar 

  • Whittaker, V.P., Barker, L.A.: The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. In: Methods of Neurochemistry, Vol. 2, pp. 1–52. (ed. R. Fried). New York: Marcel Dekker, Inc. 1972

    Google Scholar 

  • Yoshida, H., Kadota, K., Fujisawa, H.: ATP dependent calcium binding of microsomes and nerve endings. Nature (Lond.) 212, 291–292 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickers, G.R., Dowdall, M.J. Calcium uptake in preterminal central synapses: Importance of mitochondria. Exp Brain Res 25, 429–445 (1976). https://doi.org/10.1007/BF00241732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241732

Key words

Navigation