Skip to main content
Log in

Managing atmospheric CO2

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr−1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr−1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.

Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade−1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.

Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.

If fossil fuel emissions were to decrease at 1–2% yr−1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C., Hill, G. F., Jacob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W., Silva Dias, P. L., Talbot, R. W., Torres, A. L., and Wofsy, S. C.: 1988, ‘Biomass-burning Emissions and Associated Haze Layers over Amazonia’, J. Geophys. Res. 93, 1509–1527.

    Google Scholar 

  • Bacastow, R. B. and Keeling, C. D.: 1973, ‘Atmospheric Carbon Dioxide and Radiocarbon in the Natural Carbon Cycle: II. Changes from A.D. 1700 to 2070 as Deduced from a Geochemical Model’, in Woodwell, G. M., and Pecan, E. V. (eds.), Carbon and the Biosphere, CONF-720510, National Technical Information Service, Springfield VA, USA, 86–135.

    Google Scholar 

  • Bacastow, R. B. and Bjorkstrom, A.: 1981, ‘Comparison of Ocean Models for the Carbon Cycle’, in Bolin, B. (ed.), Carbon Cycle Modelling, SCOPE 16, John Wiley, Chichester, 29–79.

    Google Scholar 

  • Baes, C. F.: 1982, ‘Ocean Chemistry and Biology’, in Clark, W. C. (ed.), Carbon Dioxide Review: 1982, Clarendon Press, Oxford, 187–211.

    Google Scholar 

  • Baes, C. F., Bjorkstrom, A., and Mulholland, P. J.: 1985, ‘Uptake of Carbon Dioxide by the Oceans’, in Trabalka, J. R. (ed.), Atmospheric Carbon Dioxide and the Global Carbon Cycle, U.S. Dept. Energy, DOE/ER-0239, Washington, 81–111.

  • Baes, C. F. and Killough, G. G.: 1986, ‘Chemical and Biological Processes in CO2-ocean Models’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 329–347.

    Google Scholar 

  • Bell, R. P.: 1982, ‘Methane Hydrate and the Carbon Dioxide Question’, in W. C. Clark (ed.), Carbon Dioxide Review: 1982. Clarendon Press, Oxford, 401–406.

    Google Scholar 

  • Bjorkstrom, A.: 1986, ‘One-dimensional and Two-dimensional Ocean Models for Predicting the Distribution of CO2 between the Ocean and Atmosphere’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 258–278.

    Google Scholar 

  • Broecker, W. S. and Takahashi, T.: 1985, ‘Is there a Tie between Atmospheric CO2 Content and Ocean Circulation?’, in Sundquist, E. T. and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, American Geophysical Union, Washington, 314–326.

    Google Scholar 

  • Brown, S. and Lugo, A. E.: 1982, ‘The Storage and Production of Organic Matter in Tropical Forests and their Role in the Global Carbon Cycle’, Biotropica 14, 161–187.

    Google Scholar 

  • Brown, S. and Lugo, A. E.: 1984, ‘Biomass of Tropical Forests: A New Estimate Based on Volume’, Science 22, 1290–1293.

    Google Scholar 

  • Chandler, W.: 1988, ‘Assessing Carbon Emission Control Strategies: The Case of China’, Clim. Change 13, 241–265.

    Google Scholar 

  • Cheng, H. C., Steinberg, M., and Beller, M.: 1986, Effects of Energy Technology on Global CO 2 Emissions, U.S. Dept. Energy, DOE/NBB-0076, Washington, 92 pp.

  • Conference Statement: 1988, The Changing Atmosphere: Implications for Global Security, Environment Canada, Ottawa, 12 pp.

    Google Scholar 

  • Detwiler, R. P. and Hall, C. A. S.: 1988, ‘Tropical Forests and the Global Carbon Cycle’, Science 239, 42–47.

    Google Scholar 

  • Dickinson, R. E. and Cicerone, R. J.: 1986, ‘Future Warming from Atmospheric Trace Gases’, Nature 319, 109–115.

    Google Scholar 

  • Edmonds, J. A., Reilly, J. M., Gardner, R. H., and Brenkert, A.: 1986, Uncertainty in Future Global Energy Use and Fossil Fuel CO 2 Emissions 1975 to 2075, U.S. Dept. Energy, DOE/NBB-0081, Washington.

  • Ekdahl, C. A. and Keeling, C. D.: 1973, ‘Atmospheric Carbon Dioxide and Radiocarbon in the Natural Carbon Cycle: I. Quantitative Deductions from Records at Mauna Loa Observatory and at the South Pole’, in Woodwell, G. M. and Pecan, E. V. (eds.), Carbon and the Biosphere, USAEC, 51–85.

  • Emanuel, W. R., Killough, G. G., Post, W. M., and Shugart, H. H.: 1984, ‘Modeling Terrestrial Ecosystems in the Global Carbon Cycle with Shifts in Carbon Storage Capacity by Land-use Change’, Ecology 65, 970–983.

    Google Scholar 

  • Emanuel, W. R., Fung, I. Y.-S., Killough, G. G., Moore, B., and Peng, T.-H.: 1985, ‘Modeling the Global Carbon Cycle and Changes in the Atmospheric Carbon Dioxide Levels’, in Trabalka, J. R. (ed.), Atmospheric Carbon Dioxide and the Global Carbon Cycle, U.S. Dept. Energy, DOE/ER-0239, Washington, 141–173.

  • Fearnside, P. M.: 1985, ‘Brazil's Amazon Forest and the Global Carbon Problem’, Interciencia 10, 179–186.

    Google Scholar 

  • Fearnside, P. M.: 1986, ‘Brazil's Amazon Forest and the Global Carbon Problem: Reply to Lugo and Brown’, Interciencia 11, 58–64.

    Google Scholar 

  • Firor, J.: 1988, ‘Public Policy and the Airborne Fraction-Guest Editorial’, Clim. Change 12, 103–105.

    Google Scholar 

  • Gaffin, S. R., Hoffert, M. I., and Volk, T.: 1986, ‘Nonlinear Coupling between Surface Temperature and Ocean Upwelling as an Agent in Historical Climate Variations’, J. Geophys. Res. 91, 3944–3950.

    Google Scholar 

  • Gammon, R. H., Sundquist, E. T., and Fraser, P. J.: 1985, ‘tHistory of Carbon Dioxide in the Atmosphere’, in Trabalka, J. R. (ed.), Atmospheric Carbon Dioxide and the Global Carbon Cycle, U.S. Dept. Energy, DOE/ER-0239, Washington, 25–62.

  • Gates, D. M.: 1985, ‘Global Biospheric Response to Increasing Atmospheric Carbon Dioxide Concentration’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation, U.S. Dept. Energy, DOE/ER-0238, Washington, 171–184.

  • Gifford, G. M.: 1980, ‘Carbon Storage by the Biosphere’, in Pearman, G. I. (ed.), Carbon Dioxide and Climate: Australian Contributions, Australian Academy of Science, Canberra, 167–181.

    Google Scholar 

  • Gilliland, R. L. and Schneider, S. H.: 1984, ‘Volcanic, CO2, and Solar Forcing of Recent Climatic Changes’, Nature 310, 38–41.

    Google Scholar 

  • Goldemberg, J., Johansson, T. B., Reddy, A. K. N., and Williams, R. H.: 1985, ‘An End-use Oriented Global Energy Strategy’, Ann. Rev. Energy 10, 613–688.

    Google Scholar 

  • Goldemberg, J., Johansson, T. B., Reddy, A. K. N., and Williams, R. H.: 1988, Energy for a Sustainable World, Wiley Eastern, New Delhi, 517 pp.

    Google Scholar 

  • Goudriaan, J. and Ketner, P.: 1984, ‘A Simulation Study for the Global Carbon Cycle, Including Man's Impact on the Biosphere’, Clim. Change 6, 167–192.

    Google Scholar 

  • Goudriaan, J.: 1989, ‘Modelling Biospheric Control of Carbon Fluxes between Atmosphere, Ocean and Land in View of Climatic Change’, in Berger, A., Schneider, S. and Duplessy, J. C. (eds.), Climate and the Geosciences, NATO ASI, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 481–489.

    Google Scholar 

  • Guthrie, P. D.: 1986, ‘Biological Methanogenesis and the CO2 Greenhouse Effect’, J. Geophys. Res. 91, 10847–10851.

    Google Scholar 

  • Hafele, W.: 1981, Energy in a Finite World: A Global Systems Analysis, Ballinger, Cambridge, 837 pp.

    Google Scholar 

  • Hansen, J. and Lebedeff, S.: 1988, ‘Global Surface Air Temperatures: Update through 1987’, Geophys. Res. Let. 15, 323–326.

    Google Scholar 

  • Harvey, L. D. D. and Schneider, S. H.: 1985, ‘Transient Climatic Response to External Forcing on 100–104 Year Time Scales. Part I: Experiments with Globally-averaged Coupled Atmosphere and Ocean Energy Balance Models’, J. Geophys. Res. 90, 2191–2205.

    Google Scholar 

  • Harvey, L. D. D.: 1986, ‘Effect of Ocean Mixing on the Transient Response to a CO2 Increase: Analysis of Recent Model Results’, J. Geophys. Res. 91, 2709–2718.

    Google Scholar 

  • Harvey, L. D. D.: 1989a, ‘The Potential Role of Integrated Hydrogen Energy Systems in Alleviating the CO2 Buildup’, Clim. Change (submitted).

  • Harvey, L. D. D.: 1989b, ‘An Energy Balance Climate Model Study of Radiative Forcing and Temperature Response at 18 Ka BP’, J. Geophys. Res. 94, 12873–12884.

    Google Scholar 

  • Harvey, L. D. D.: 1989c, ‘Effect of Model Structure on Response of Terrestrial Biosphere Models to CO2 and Temperature Increases’, Global Biogeochem. Cycles 3, 137–153.

    Google Scholar 

  • Harvey, L. D. D.: 1989d, ‘Managing Atmospheric CO2: Policy Implications’, Energy (accepted).

  • Heimann, M., Keeling, C. D., and Fung, I. Y.: 1986, ‘Simulating the Atmospheric Carbon Dioxide Distribution with a Three-dimensional Tracer Model’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 16–49.

    Google Scholar 

  • Houghton, R. A.: 1986, ‘Estimating Changes in the Carbon Content of Terrestrial Ecosystems from Historical Data’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 175–193.

    Google Scholar 

  • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere’, Ecol. Mono 53, 235–262.

    Google Scholar 

  • Houghton, R. A., Boone, R. D., Melillo, J. M., Palm, C. A., Woodwell, G. M., Myers, N., Moore III B., and Skole, D. L.: 1985, ‘Net Flux of Carbon Dioxide from Tropical Forests in 1980’, Nature 316, 617–620.

    Google Scholar 

  • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., and Woodwell, G. M., Moore, B., Skole, D. L., and Myers, N.: 1987, ‘The Flux of Carbon from Terrestrial Ecosystems to the Atmosphere in 1980 due to Changes in Land Use: Geographic Distribution of the Global Flux’, Tellus 39B, 122–139.

    CAS  Google Scholar 

  • Johansson, T. B.: Bodlund, B., and Williams, R. H. (eds.): 1989, Electricity: Efficient End-use and New Generation Technologies, and their Planning Implications, Lund University Press, Lund, 960 pp.

    Google Scholar 

  • Johansson, T. B. and Williams, R. H.: 1987, ‘Energy Conservation in the Global Context’, Energy 12, 907–919.

    Google Scholar 

  • Jones, P. D., Wigley, T. M. L., and Wright, P. B.: 1986, ‘Global Temperature Variations between 1861 and 1984’, Nature 322, 430–434.

    Google Scholar 

  • Khandani, S. M. H. and Rose, D. J.: 1985, ‘Options in Planning Global Energy Strategies’, Energy 10, 887–899.

    Google Scholar 

  • Killough, G. G. and Emanuel, W. R.: 1981, ‘A Comparison of Several Models of Carbon Turnover in the Ocean with Respect to their Distribution of Transit Time and Age, and Response to Atmospheric CO2 and 14C’, Tellus 33, 274–290.

    Google Scholar 

  • Laurmann, J. A. and Spreiter, J. R.: 1983, ‘The Effects of Carbon Cycle Model Error in Calculating Future Atmospheric Carbon Dioxide Levels’, Clim. Change 5, 145–181.

    Google Scholar 

  • Lovins, A. B.: 1980, ‘Economically Efficient Energy Futures’, in Bach, W., Pankrath, J., and Williams, J. (eds.), Interactions of Energy and Climate, Reidel, Dordrecht, Holland, 1–31.

    Google Scholar 

  • Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and Storage of CO2 in the Ocean - an Inorganic Ocean-circulation Carbon Cycle Model’, Climate Dynamics 2, 63–90.

    Google Scholar 

  • Marland, G.: 1988, The Prospect of Solving the CO 2 Problem Through Global Reforestation, U.S. Dept. Energy, DOE/NBB-0082, Washington, 66 pp.

  • Mintzer, I. M.: 1987, A Matter of Degrees: The Potential for Controlling the Greenhouse Effect, World Resources Institute, Washington, 60 pp.

    Google Scholar 

  • Mulholland, P. J. and Elwood, J. W.: 1982, ‘The Role of Lake and Reservoir Sediments as Sinks in the Perturbed Global Carbon Cycle’, Tellus 34J, 490–499.

    Google Scholar 

  • Oeschger, H., Siegenthaler, U., Schotterer, U., and Gugelmann, A.: 1975, ‘A Box Diffusion Model to Study the Carbon Dioxide Exchange in Nature’, Tellus 27, 168–192.

    Google Scholar 

  • Oeschger, H. and Stauffer, B.: 1986, ‘Review of the History of Atmospheric CO2 Recorded in Ice Cores’, in Trabalka, J. R. (ed.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 89–108.

    Google Scholar 

  • Peng, T.-H. and Freyer, H. D.: 1986, ‘Revised Estimates of Atmospheric CO2 Variations Based on the Tree-ring 13C Record’, in Trabalka, J. R. (ed.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 151–159.

    Google Scholar 

  • Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J.: 1987, ‘Seasonal Variability of Carbon Dioxide, Nutrients and Oxygen in the North Atlantic Surface Water: Observations and a Model’, Tellus 39B, 439–458.

    Google Scholar 

  • Perry, A. M., Araj, K. J., Fulkerson, W., Rose, D. J., Miller, M. M., and Rotty, R. M.: 1982, ‘Energy Supply and Demand Implications of CO2’, Energy 7, 991–1004.

    Google Scholar 

  • Perry, A. M.: 1986, ‘Possible Changes in Future Use of Fossil Fuels to Limit Environmental Effects’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 561–574.

    Google Scholar 

  • Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, L., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M.: 1987, ‘Climate-chemical Interactions and Effects of Changing Atmospheric Trace Gases’, Rev. Geophys. 25, 1441–1482.

    Google Scholar 

  • Rotty, R. M.: 1980, ‘Data for Global CO2 Production from Fossil Fuels and Cement’, in Bolin, B. (ed.), Carbon Cycle Modelling, Scope 16, John Wiley, Chichester, 121–125.

    Google Scholar 

  • Rotty, R. M.: 1987, ‘A Look at 1983 CO2 Emissions from Fossil Fuels (with preliminary data for 1984)’, Tellus 39B, 203–208.

    Google Scholar 

  • Sarmiento, J. L. and Toggweiler, J. R.: 1984, ‘A New Model for the Role of the Oceans in Determining Atmospheric pCO2’, Nature 308, 621–624.

    Google Scholar 

  • Schlesinger, M. E., and Zhao, Z.-C.: 1989, ‘Seasonal Climatic Changes Induced by Doubled CO2 as Simulated by the OSU Atmospheric GCM/Mixed Layer Ocean Model’, J. Climate 2, 459–495.

    Google Scholar 

  • Siegenthaler, U.: 1983, ‘Uptake of Excess CO2 by an Outcrop-diffusion Model of the Ocean’, J. Geophys. Res. 88, 3599–3608.

    Google Scholar 

  • Siegenthaler, U. and Oeschger, H.: 1987, ‘Biospheric CO2 Emissions during the Past 200 Years Reconstructed by Deconvolution of Ice Core Data’, Tellus 39B, 140–154.

    Google Scholar 

  • Solomon, A. M., Trabalka, J. R., Reichle, D. E., and Voorhees, L. D.: 1985, ‘The Global Cycle of Carbon’, in Trabalka, J. R. (ed.), Atmospheric Carbon Dioxide and the Global Carbon Cycle, U.S. Dept. Energy, DOE/ER-0239, Washington, 1–13.

  • Solomon, A. M.: 1986, ‘Transient Response of Forests to CO2-induced Climate Change: Simulation Modeling Experiments in Eastern North America’, Oecologia 68, 567–579.

    Google Scholar 

  • Stauffer, B., Hofer, H., Oeschger, H., Schwander, J., and Siegenthaler, U.: 1984, ‘Atmospheric CO2 Concentration during the Last Glaciation’, Annals Glac. 5, 160–164.

    Google Scholar 

  • Trabalka, J. R., Edmonds, J. A., Reilly, J. M., Gardner, R. H., and Reichle, D. E.: 1986, ‘Atmospheric CO2 Projections with Globally Averaged Carbon Cycle Models’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, 534–560.

    Google Scholar 

  • United Nations: 1988, 1986 Energy Statistics Yearbook, United Nations, Dept. of International Economic and Social Affairs, Statistical Office, New York.

    Google Scholar 

  • United Nations Environment Programme (UNEP): 1987, Montreal Protocol on Ozone Depleting Substances.

  • Viecelli, J. A., Ellsaesser, H. W., and Burt, J. E.: 1981, ‘A Carbon Cycle Model with Latitude Dependence’, Clim. Change 3, 281–301.

    Google Scholar 

  • Wang, W.-C., Wuebbles, D. J., Washington, W. M., Isaacs, R. G., and Molnar, G.: 1986, ‘Trace Gases and Other Potential Perturbations to Global Climate’, Rev. Geophys. 24, 110–140.

    Google Scholar 

  • Weiss, R. F.: 1981, ‘The Temporal and Spatial Distribution of Tropospheric Nitrous Oxide’, J. Geophys. Res. 86, 7185–7195.

    Google Scholar 

  • Wigley, T. M. L.: 1986, ‘Relative Contributions of Different Trace Gases to the Greenhouse Effect’, Climate Monitor 16, 14–28.

    Google Scholar 

  • Wigley, T. M. L.: 1987, ‘The Effect of Model Structure on Projections of Greenhouse-gas-induced Climatic Change’, Geophys. Res. Let. 14, 1135–1138.

    Google Scholar 

  • Wigley, T. M. L.: 1988, ‘Future CFC Concentrations under the Montreal Protocol and their Green- house-effect Implications’, Nature 335, 333–335.

    Google Scholar 

  • Wigley, T. M. L.: 1989, ‘Climatic Change due to SO2-derived Cloud Condensation Nuclei’, Nature (in press).

  • Wigley, T. M. L. and Raper, S. C. B.: 1987, ‘Thermal Expansion of Sea Water Associated with Global Warming’, Nature 330, 127–131.

    Google Scholar 

  • Wilson, C. A. and Mitchell, J. F. B.: 1987, ‘A Doubled CO2 Climate Sensitivity Experiment with a Global Climate Model Including a Simple Ocean’, J. Geophys. Res. 92, 13315–13343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, L.D.D. Managing atmospheric CO2 . Climatic Change 15, 343–381 (1989). https://doi.org/10.1007/BF00240464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240464

Keywords

Navigation