Skip to main content

Advertisement

Log in

Comment on “Extreme Level of CO2 Accumulation Into the Atmosphere due to the Unequal Global Carbon Emission and Sequestration” by M. F. Hossain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Rising atmospheric concentrations of carbon dioxide (CO2) and other greenhouse gases are driving modern climate change and, therefore, are having substantial and sustained impacts on natural ecosystems and human populations. In a recent article in this journal, M. F. Hossain (2022. Water, Air, and Soil Pollution. 233:105) calculated how anthropogenic activity has perturbed the global carbon cycle, forecast future increases in atmospheric CO2 concentrations, and discussed possible health consequences from rising CO2 levels. However, Hossain’s article gave an inaccurate representation of how human actions have altered the global carbon cycle. He substantially underestimated the magnitude of anthropogenic disturbances in terms of CO2 emissions from fossil fuel combustion and land use change and also underestimated the role of land and ocean processes in removing some of the emitted CO2 from the atmosphere. At the same time, he overestimated the rate at which atmospheric CO2 levels are increasing, resulting in a highly improbable forecast for atmospheric CO2 concentrations later in this century. He also exaggerated the health impacts from exposure to those CO2 levels as being severe and deadly, when our current understanding suggests that the direct effects are uncertain but likely minor. Because each of the major components of Hossain (2022) contains substantial and fundamental flaws, I warn readers to be skeptical before incorporating its findings into their understanding of carbon cycling, climate change, and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The information shown in Figs. 1 and 2 is taken directly from the published literature, from public data repositories, or is calculated from those literature/repository sources. No new data are presented in this submission.

References

  • Ballantyne, A. P., Alden, C. B., Miller, J. B., Trans, P. P., & White, J. W. C. (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488(7409), 70–73. https://doi.org/10.1038/nature11299

    Article  CAS  Google Scholar 

  • Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64(275), 223–240. https://doi.org/10.1002/qj.49706427503

    Article  Google Scholar 

  • Cetin, M. (2016). A change in the amount of CO2 at the center of the examination halls: Case study of Turkey. Studies on Ethno-Medicine, 10(2), 146–155. https://doi.org/10.1080/09735070.2016.11905483

    Article  Google Scholar 

  • Cetin, M., & Sevik, H. (2016). Measuring the impact of selected plants on indoor CO2 concentrations. Polish Journal of Environmental Studies, 25(3), 973–979. https://doi.org/10.15244/pjoes/61744

    Article  CAS  Google Scholar 

  • Ciais, P., Sabine, C. L., Bala, G., Bopp, L., Brovkin, V., Canadell, J. G., et al. (2013). Carbon and other biogeochemical cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge University Press.

  • D’Amato, G., Chong-Neto, H. J., MongeOrtega, O. P., Vitale, C., Ansotegui, I., Rosario, N., et al. (2020). The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy: European Journal of Allergy and Clinical Immunology, 75(9), 2219–2228. https://doi.org/10.1111/all.14476

  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Du, B., Tandoc, M. C., Mack, M. L., & Siegel, J. A. (2020). Indoor CO2 concentrations and cognitive function: A critical review. Indoor Air, 30(6), 1067–1082. https://doi.org/10.1111/ina.12706

    Article  CAS  Google Scholar 

  • Ebi, K. L., Balbus, J. M., Luber, G., Bole, A., Crimmins, A., Glass, G., et al. (2018). Human health. In D R Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment (Vol. II, pp. 572–603). U.S. Global Change Research Program. https://doi.org/10.7930/NCA4.2018.CH14

  • Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., et al. (2019). Global carbon budget 2019. Earth System Science Data, 11, 1783–1838. https://doi.org/10.5194/essd-11-1783-2019

    Article  Google Scholar 

  • Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., et al. (2020). Global carbon budget 2020. Earth System Science Data, 12, 3269–3340. https://doi.org/10.5194/essd-12-3269-2020

    Article  Google Scholar 

  • Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. (2022). Global carbon budget 2021. Earth System Science Data, 14, 1917–2005. https://doi.org/10.5194/essd-14-1917-2022

    Article  Google Scholar 

  • Hossain, M. F. (2022). Extreme level of CO2 accumulation into the atmosphere due to the unequal global carbon emission and sequestration. Water, Air, and Soil Pollution, 233(4), 1–6. https://doi.org/10.1007/s11270-022-05581-1

    Article  CAS  Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Eds.), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Jacobson, T. A., Kler, J. S., Hernke, M. T., Braun, R. K., Meyer, K. C., & Funk, W. E. (2019). Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability, 2(8), 691–701. https://doi.org/10.1038/s41893-019-0323-1

    Article  Google Scholar 

  • Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., & Meijer, H. A. (2005). Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In J. R. Ehleringer, T. E. Cerling, & M. D. Dearing (Eds.), A history of atmospheric CO2 and its effects on plants, animals, and ecosystems (pp. 83–113). Springer. https://doi.org/10.1007/0-387-27048-5_5

  • Keeling, C. D. (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200–203.

    Article  Google Scholar 

  • Langford, N. J. (2005). Carbon dioxide poisoning. Toxicological Reviews, 24(4), 229–235. https://doi.org/10.2165/00139709-200524040-00003

    Article  CAS  Google Scholar 

  • Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2018). Global carbon budget 2018. Earth System Science Data, 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018

    Article  Google Scholar 

  • Lieber, M., Chin-Hong, P., Kelly, K., Dandu, M., & Weiser, S. D. (2022). A systematic review and meta-analysis assessing the impact of droughts, flooding, and climate variability on malnutrition. Global Public Health, 17(1), 68–82. https://doi.org/10.1080/17441692.2020.1860247

    Article  Google Scholar 

  • Limaye, V. S., Vargo, J., Harkey, M., Holloway, T., & Patz, J. A. (2018). Climate change and heat-related excess mortality in the eastern USA. EcoHealth, 15(3), 485–496. https://doi.org/10.1007/s10393-018-1363-0

    Article  Google Scholar 

  • Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., et al. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020

    Article  CAS  Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J. S., Huang, J., et al. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge University Press.

  • OSHA. (2020). Occupational chemical database: Carbon dioxide. United States Occupational Safety and Health Administration. https://www.osha.gov/chemicaldata/183. Accessed 21 April 2022

  • Pan, S., Tian, H., Dangal, S. R. S., Zhang, C., Yang, J., Tao, B., et al. (2014). Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0112810

  • Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., et al. (2015). Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society b: Biological Sciences, 370(1665), 1–17. https://doi.org/10.1098/rstb.2013.0551

    Article  Google Scholar 

  • USDA. (2020). Carbon dioxide health hazard information sheet. United States Department of Agriculture Food Safety and Inspection Service. https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf. Accessed 20 April 2022

  • USDHEW. (1976). Criteria for a recommended standard: Occupational exposure to carbon dioxide. United States Department of Health, Education, and Welfare. National Institute for Occupational Safety and Health, NIOSH 76–194. https://www.cdc.gov/niosh/docs/76-194/. Accessed 21 April 2022

  • USGCRP. (2018). Impacts, risks, and adaptation in the United States: The fourth National Climate Assessment, Volume II. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart, (Eds.). Global Change Research Program. https://doi.org/10.7930/NCA4.2018

  • Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., et al. (2013). Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. Journal of Geophysical Research Atmospheres, 118(10), 4326–4347. https://doi.org/10.1002/jgrd.50320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Neubauer.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neubauer, S.C. Comment on “Extreme Level of CO2 Accumulation Into the Atmosphere due to the Unequal Global Carbon Emission and Sequestration” by M. F. Hossain. Water Air Soil Pollut 233, 371 (2022). https://doi.org/10.1007/s11270-022-05841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05841-0

Keywords

Navigation