Skip to main content
Log in

Pretecto-tectal influences

II. How retinal and pretectal inputs to the toad's superficial tectum interact: a study of electrically evoked field potentials

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

(1)From the dorsal surface of the toad (Bufo b. spinosus, B. marinus) optic tectum (OT), field potentials (FP) were recorded at 9 reference sites in response to electrical stimulation of the optic nerve (ON). The FP showed 4 main components, besides an initial deflection attributed to axonal potentials: two negative waves N1, N2 (attributed to postsynaptic excitatory processes) and two positive waves P2, P3 (attributed to postsynaptic inhibitory processes). The responses across the reference sites were rather similar in different individuals. (2) Electrical stimulation of an area in the ipsilateral pretectal lateral posterodorsal and posterior (Lpd/P) thalamic region evoked tectal FPs showing mainly a negative and a positive wave. Regarding wave amplitudes, the FPs displayed disproportionalities across the reference sites. (3) Electrical stimulation of the contralateral Lpd/P evoked mainly a positive wave in the tectal FP whose disproportionality corresponded roughly to the one obtained to ipsilateral Lpd/P stimulation. (4) The inital negative wave of the tectal FP in response to ON stimulation was nearly abolished, if Lpd/P stimulation preceded ON stimulation at a delay of 17–25 ms. (5) Since FPs showed adaptation to repetitive stimulation, various experiments were carried out to distinguish adaptation phenomena from effects of neuronal interactions between Lpd/P and OT. (6) The results provide evidence that ON- and Lpd/P-mediated inputs interact in superficial tectal layers, whereby pretectotectal input suppresses retinotectal excitatory information transfer. Input of Lpd/P to the contralateral superficial OT suggests postsynaptic inhibition. This study provides no information about pretectal inputs to deeper tectal layers, which anatomically are known to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A-I :

recording sites from the dorsal tectal surface

D t :

delay between Lpd/P and ON stimulation

EPSP IPSP :

excitatory and inhibitory postsynaptic potentials, respectively

FP :

field potential

L :

latency of FP waves

ON :

optic nerve

OT :

optic tectum

Lpd/P :

lateral posterodorsal and posterior pretectal thalamic region

Lpv :

lateral posteroventral pretectal thalamic nucleus

N, P :

negative and positive waves of FPs, respectively

PRE :

presynaptic axonal input

TH :

pretectal thalamic neurons

References

  • Buxbaum-Conradi H, Ewert J-P (1995) Pretecto-tectal influences I. What the toad's pretectum tells its tectum: an antidromic stimulation/recording study. J Comp Physiol A 176: 169–180

    Google Scholar 

  • Chung SH, Bliss TVP, Keating MJ (1974) The presynaptic organization of optic afferents in the amphibian tectum. Proc R Soc Lond Bs 187: 421–447

    Google Scholar 

  • Colmers WF, Lukowiak K, Pittman QJ (1987) Presynaptic action of neuropeptide Y in area CA1 of the rat hippocampal slice. J Physiol (Lond) 383: 285–299

    Google Scholar 

  • Debski EA, Constantine-Paton M (1990) Evoked pre and post synaptic activity in the optic tectum of the cannulated tadpole. J Comp Physiol A 167: 377–390

    Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70

    Google Scholar 

  • Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Google Scholar 

  • Ewert J-P (1989) The release of visual behavior in toads: Stages of parallel/hierarchical information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York, London, pp 39–120

    Google Scholar 

  • Ewert J-P, Wietersheim Av (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148

    Google Scholar 

  • Ewert J-P, Wietersheim Av (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von TectumNeuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160

    Google Scholar 

  • Ewert J-P, Schwippert WW, Beneke TW (1990) Parallel distributed processing of configural moving objects in the toad's visual system. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo, pp 109–112

    Google Scholar 

  • Gernert M, Ewert J-P (1995) Neuropharmacological effects on visually evoked field potentials in the cone toads superficial optic tectum (submitted)

  • Gruberg ER (1989) Nucleus isthmi and optic tectum in frogs. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 341–356

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385

    Google Scholar 

  • Halgren E (1990) Human evoked potentials. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, applications to neural systems. Humana Press, Clifton New Jersey, pp 147–275

    Google Scholar 

  • Humphrey DR, Schmidt EM (1990) Extracellular single unit recording method. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, Applications to neural systems. Humana Press, Clifton, New Jersey, pp 1–64

    Google Scholar 

  • Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424

    CAS  PubMed  Google Scholar 

  • Jassik-Gerschenfeld D, Hardy O (1984) The avian optic tectum: Neurophysiology and behavioral correlations. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 649–686

    Google Scholar 

  • Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348

    Google Scholar 

  • Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201

    Google Scholar 

  • Kuljis RO, Karten HJ (1983) Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation. J Comp Neurol 217: 239–251

    Google Scholar 

  • Lázár G (1984) Structure and connections of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 185–210

    Google Scholar 

  • Lázár G (1989) Cellular architecture and connectivity of the frog's optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 175–199

    Google Scholar 

  • Leung L-WS (1990) FPs in the central nervous system-recording, analysis, and modeling. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, applications to neural systems. Humana Press, Clifton New Jersey, pp 277–312

    Google Scholar 

  • Lewis D, Teyler TJ (1986) Long-term potentiation in the goldfish optic tectum. Brain Res 375: 246–250

    Google Scholar 

  • Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222

    Google Scholar 

  • Matsumoto N, Bando T (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39–48

    Google Scholar 

  • Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog's optic tectum in response to moving configurational visual stimuli. J Comp Physiol A 159: 721–739

    Google Scholar 

  • McCawley EL (1949) Certain actions of curare on the central nervous system. J Pharmacol 97: 129–139

    Google Scholar 

  • Merchenthaler I, Lázár G, Maderdrut JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39

    Google Scholar 

  • Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213: 262–278

    Google Scholar 

  • Peretz B (1969) Vertical distribution of optic nerve fiber terminations in the frog optic tectum. Am J Physiol 217: 181–187

    Google Scholar 

  • Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Scalia F (1976) The optic pathway of the frog: Nuclear organization and connections. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 386–406

    Google Scholar 

  • Schwippert WW, Ewert J-P (1994) Effect of neuropeptide-Y on tectal field potentials in the toad. Brain Res (in press)

  • Sivilotti L, Nistri A (1986) Biphasic effects of glycine on synaptic responses of the frog optic tectum in vitro. Neurosci Lett 66: 25–30

    Google Scholar 

  • Steinbach JH, Stevens CF (1976) Neuromuscular transmission. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 33–92

    Google Scholar 

  • Stevens RJ (1974) A model of an early ‘off’ response in frog optic tectum. Brain Res 67: 51–63

    Google Scholar 

  • Székely G (1973) Anatomy and synaptology of the optic tectum. In: Jung R (ed) Central processing of visual information, Part B, Visual centers in the brain, (Handbook of sensory physiology, Volume VII/3), Springer, Berlin Heidelberg New York, pp 1–26

    Google Scholar 

  • Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434

    Google Scholar 

  • Vanegas H, Williams B, Essayag E (1984) Electrophysiological and behavioral aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 121–161

    Google Scholar 

  • Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwippert, W.W., Beneke, T.W. & Ewert, J.P. Pretecto-tectal influences. J Comp Physiol A 176, 181–192 (1995). https://doi.org/10.1007/BF00239921

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239921

Key words

Navigation