Skip to main content
Log in

Pretecto-tectal influences

I. What the toad's pretectum tells its tectum: an antidromic stimulation/recording study

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Optic tectum and pretectum are two main structures for parallel processing of contralateral retinal inputs. Since it is known from anatomic studies that pretectum projects to ipsilateral tectum, the present investigation focuses on the physiological properties of this information transfer. (1) Extracellular single cell recordings from pretectal thalamic nuclei in cane toads Bufo marinus revealed different classes of neurons, TH1 to TH10, comparable to the ones described previously in B. americanus, except TH9. A further class TH11 responded specifically to the temporonasal direction of movement of a large object or textured surface. (2) Most neurons belonged to the classes TH3 and TH4, sensitive particularly to large moving objects and responsive to moving textured surfaces independent of the horizontal direction of movement. Nearly one third could be antidromically activated to electrical stimulation of the ipsilateral optic tectum, by the criterion of the collision test, that is ultimate proof of their pretectotectal projective character. (3) Among the remaining neurons, one tonically discharging TH1 cell fulfilled the collision test. (4) It is suggested that TH3 cells inform topographically corresponding structures of the tectal visual map about large moving objects and their extension perpendicular to the direction of movement, hence contributing to the discrimination between prey and non-prey. Class TH4 pretectotectal projection cells with inputs from the entire monocular or binocular visual field inform the tectum about large objects moving anywhere in the visual field and about a moving textured surrounding that fills the visual field. The latter would allow the tectum to discriminate object motion from self-induced motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

stripe in antiworm configuration, oriented perpendicular to the direction of movement

W :

stripe in worm configuration, oriented parallel to the direction of movement

S :

square

C E C T :

empirical and theoretical collision interval, respectively

ERF :

excitatory receptive field

IRF :

inhibitory receptive field

L, R :

neuronal response latency and absolute refractory period, respectively

Lpd Lpv P:

lateral posterodorsal, lateral posteroventral, and posterior pretectal thalamic nucleus, respectively

NT TN :

nasotemporal or temporonasal direction of stimulus movement in the visual field of the eye

OT :

optic tectum

TH :

classes of pretectal thalamic neurons

References

  • Arbib MA (1989) Visuomotor coordination: neural models and perceptual robotics. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination, amphibians, comparisons, models, and robots. Plenum Press, New York, pp 121–171

    Google Scholar 

  • Bieger D, Neuman RS (1984) Selective accumulation of hydroxytryptamines by frogs tectal neurons. Neuroscience 12: 1167–1177

    Google Scholar 

  • Birukow G (1938) Untersuchungen über den optischen Drehnystagmus und über die Sehschärfe des Grasfrosches (Rana temporaria L). Z Vergl Physiol 25: 92–142

    Google Scholar 

  • Brown WT, Ingle D (1973) Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Res 59: 405–409

    Google Scholar 

  • Brown WT, Marker WB (1977) Unit responses in the frog's caudal thalamus. Brain Behav Evol 14: 274–297

    Google Scholar 

  • Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L). J Comp Physiol 152: 241–249

    Google Scholar 

  • Cochran SL, Dieringer N, Precht W (1984) Basic optokinetic-ocular reflex patterns in the frog. J Neurosci 4: 43–57

    Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70

    Google Scholar 

  • Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: preycatching in toads. Behav Brain Sci 10: 337–405

    Google Scholar 

  • Ewert J-P (1992) Neuroethology of an object features relating algorithm and its modification by learning. Rev Neurosci 3: 45–63

    Google Scholar 

  • Ewert J-P, Wietersheim Av (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148

    Google Scholar 

  • Ewert J-P, Wietersheim Av (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160

    Google Scholar 

  • Ewert J-P, Hock FJ, Wietersheim Av (1974) Thalamus/Praetectum/Tectum: retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physiol 92: 343–356

    Google Scholar 

  • Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475

    Google Scholar 

  • Ewert J-P, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1990) Responses of medullary neurons to moving visual stimuli in the common toad: I. Characterization of medial reticular neurons by extracellular recording. J Comp Physiol A 167: 495–508

    Google Scholar 

  • Ewert J-P, Beneke TW, Schürg-Pfeiffer E, Schwippert WW, Weerasuriya A (1994) Sensorimotor processes that underlie feeding behavior in tetrapods. In: Bels VL, Chardon M, Vandevalle P (eds) Advances in comparative and environmental physiology, Vol. 18: Biomechanics of feeding in vertebrates. Springer, Berlin Heidelberg New York, pp 119–161

    Google Scholar 

  • Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 87–118

    Google Scholar 

  • Frost BJ (1982) Mechanisms for discriminating object motion from self-induced motion in the pigeon. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. The MIT Press, Cambridge, pp 177–196

    Google Scholar 

  • Fuller JH, Schlag JD (1976) Determination of antidromic excitation by the collision test: problems of interpretation. Brain Res 112: 283–298

    Google Scholar 

  • Gaillard F, Galand G (1979) Diencephalic binocular wide field neurons in the frog. Exp Brain Res 34: 511–520

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1973) Neuronal mechanisms of visual movement perception and some psychological and behavioral correlates. In: Jung R (ed) Central processing of visual information: integrative functions and comparative data. (Handbook of Sensory Physiology, Vol. VII/3A). Springer, Berlin Heidelberg New York, pp 333–429

    Google Scholar 

  • Heiden an der U, Roth G (1989) Retina and optic tectum in amphibians: a mathematical model and simulation studies. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 243–267

    Google Scholar 

  • Holst E v, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37: 464–476

    Google Scholar 

  • Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424

    CAS  PubMed  Google Scholar 

  • Ingle D (1976) Behavioral correlates of central visual function in anurans. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 435–451

    Google Scholar 

  • Ingle D (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. J Comp Physiol Psychol 91: 1359–1364

    Google Scholar 

  • Ingle D (1980) Some effects of pretectum lesions on the frog's detection of stationary objects. Behav Brain Res 1: 139–163

    Google Scholar 

  • Ingle D (1983a) Prey selection in frogs and toads: a neuroethological model. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology, Vol. 6: Motivation. Plenum Press, New York, pp 235–261

    Google Scholar 

  • Ingle DJ (1983b) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226

    Google Scholar 

  • Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140: 53–57

    Google Scholar 

  • Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348

    Google Scholar 

  • Lázár G (1971) The projection of the retinal quadrants on the optic centers in the frog. Acta Morphol Acad Sci Hung 19: 325–334

    Google Scholar 

  • Lázár G (1972) Role of accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5: 443–460

    Google Scholar 

  • Lázár G (1989) Cellular architecture and connectivity of the frog's optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 175–199

    Google Scholar 

  • Lázár G, Alkony B, Tóth P (1983) Reinvestigation of the role of the accessory optic system and the pretectum in the horizontal head nystagmus of the frog. Lesion experiments. Acta Biol Acad Sci Hung 34: 385–393

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Engin 47: 1940–1951

    Google Scholar 

  • Lipski J (1981) Antidromic activation of neurons as an analytic tool in the study of the central nervous system. J Neurosci Methods 4: 1–32

    Google Scholar 

  • Manteuffel G (1984) Electrophysiology and anatomy of direction-specific pretectal units in Salamandra salamandra. Exp Brain Res 54: 415–425

    Google Scholar 

  • Manteuffel G (1985) Monocular and binocular optic inputs to salamander pretectal neurons: intracellular recording and HRP labelling study. Brain Behav Evol 27: 1–10

    Google Scholar 

  • Manteuffel G (1987) Binocular afferents to salamander pretectum mediate rotation sensitivity of cells selective for visual background motions. Brain Res 422: 381–383

    Google Scholar 

  • Manteuffel G (1989) Compensation of visual background motion in salamanders. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 311–340

    Google Scholar 

  • Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222

    Google Scholar 

  • Merchenthaler I, Lázár G, Maderdrut, JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39

    Google Scholar 

  • Montgomery N, Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: functional analysis. Brain Behav Evol 21:137–150

    Google Scholar 

  • Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234: 264–275

    Google Scholar 

  • Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213: 262–278

    Google Scholar 

  • Rehn B (1977) Cerebrale Repräsentation des Fluchtverhaltens der Erdkröte (Bufo bufo L). PhD Thesis, Technical Univ Darmstadt

  • Satou M, Matsushima T, Takeuchi H, Ueda K (1985) Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the ‘snapping-evoking area’ in the optic tectum. J Comp Physiol A 157: 717–737

    Google Scholar 

  • Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1994) Temporal discharge patterns of tectal and medullary neurons chronically recorded during snapping toward prey in toads Bufo bufo spinosus. J Comp Physiol A 173: 363–376

    Google Scholar 

  • Schwippert WW, Beneke TW, Ewert J-P (1995) Pretecto-tectal influences II. How retinal and pretectal inputs to the toad's superficial tectum interact: a study of electrically evoked field potentials. J Comp Physiol A 176: 181–192

    Google Scholar 

  • Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. In: Finger TE (ed) Neural cartography: how does the CNS use sensory maps? Karger, Basel, pp 49–55

    Google Scholar 

  • Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434

    Google Scholar 

  • Tóth P, Csank G, Lázár G (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. J Hirnforsch 26: 365–383

    Google Scholar 

  • sai H-J (1990) Responses of toad's tectal neurons to in-phase and anti-phase movements of object and textured background. J Comp Physiol A 167: 857–863

    Google Scholar 

  • Tsai H-J, Ewert J-P (1988) Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L). Brain Behav Evol 32: 27–38

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad's optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429–434

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufo. Soc Neurosci Abstr 9: 536

    Google Scholar 

  • Wietersheim A v, Ewert J-P (1978) Neurons of the toad's (Bufo bufo L) visual system sensitive to moving configurational stimuli: a statistical analysis. J Comp Physiol 126: 35–42

    Google Scholar 

  • Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxbaum-Conradi, H., Ewert, J.P. Pretecto-tectal influences. J Comp Physiol A 176, 169–180 (1995). https://doi.org/10.1007/BF00239920

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239920

Key words

Navigation