Skip to main content
Log in

Allosterism and Na++-d-glucose cotransport kinetics in rabbit jejunal vesicles: Compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We first present two simple dimeric models of cotransport that may account for all of the kinetics of Na++-d-glucose cotransport published so far in the small intestine. Both the sigmoidicity in the Na++ activation of transport (positive cooperativity) and the upward deviations from linearity in the Eadie-Hofstee plots relative to glucose concentrations (negative cooperativity) can be rationalized within the concept of allosteric kinetic mechanisms corresponding to either of two models involving sequential or mixed concerted and sequential conformational changes. Such models also allow for 2 Na++∶ 1 S and 1 Na++∶ 1 S stoichiometries of cotransport at low and high substrate concentrations, respectively, and for partial inhibition by inhibitors or substrate analogues. Moreover, it is shown that the dimeric models may present physiological advantages over the seemingly admitted hypothesis of two different cotransporters in that tissue. We next address the reevaluation of Na++-d-glucose cotransport kinetics in rabbit intestinal brush border membrane vesicles using stable membrane preparations, a dynamic approach with the Fast Sampling Rapid Filtration Apparatus (FSRFA), and both nonlinear regression and statistical analyses. Under different conditions of temperatures, Na++ concentrations, and membrane potentials clamped using two different techniques, we demonstrate that our data can be fully accounted for by the presence of only one carrier in rabbit jejunal brush border membranes since transport kinetics relative to glucose concentrations satisfy simple Michaelis-Menten kinetics. Although supporting a monomeric structure of the cotransporter, such a conclusion would conflict with previous kinetic data and more recent studies implying a polymeric structure of the carrier protein. We thus consider a number of alternatives trying to reconcile the observation of Michaelis-Menten kinetics with allosteric mechanisms of cotransport associated with both positive and negative cooperativities for Na++ and glucose binding, respectively. Such models, implying energy storage and release steps through conformational changes associated with ligand binding to an allosteric protein, provide a rational hypothesis to understand the long-time debated question of energy transduction from the Na++ electrochemical gradient to the transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berteloot, A. 1984. Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effects of Na++ -, K++-, and H++gradients. Biochim. Biophys. Acta 775:129–140

    Google Scholar 

  2. Berteloot, A. 1986. Highly permeant anions and glucose uptake as an alternative for quantitative generation and estimation of membrane potential differences in brush border membrane vesicles. Biochim. Biophys. Acta 775:129–140

    Google Scholar 

  3. Berteloot, A., Malo, C., Breton, S., Brunette, M. 1991. A fast sampling, rapid filtration apparatus: principal characteristics and validation from studies of d-glucose transport in human jejunal brush-border membrane vesicles. J. Membrane Biol. 122:111–125

    Google Scholar 

  4. Berteloot, A., Semenza, G. 1990. Advantages and limitations of vesicles for the characterization and the kinetic analysis of transport systems. Meth. Enzymol. 192:409–437

    Google Scholar 

  5. Brot-Laroche, E., Serrano, M., Delhomme, B., Alvarado, F. 1986. Temperature sensitivity and substrate specificity of two distinct Na++-activated d-glucose transport systems in guinea pig jejunal brush border membrane vesicles. J. Biol. Chem. 261:6168–6176

    Google Scholar 

  6. Centelles, J.J., Kinne, R.K.H., Heinz, E. 1991. Energy coupling of Na-glucose cotransport. Biochim. Biophys. Acta 1065:239–249

    Google Scholar 

  7. Coady, M.J., Pajor, A.M., Wright, E.M. 1990. Sequence homologies among intestinal and renal Na++/glucose cotransporters. Am. J. Physiol. 259:C605-C610

    Google Scholar 

  8. Crane, R.K. 1977. The gradient hypothesis and other models of carrier-mediated active transport. Rev. Physiol. Biochem. Pharmacol. 78:99–159

    Google Scholar 

  9. Crane, R.K. 1985. Comments and experiments on the kinetics of Na++ gradient-coupled glucose transport as found in rabbit jejunal brush-border membrane vesicles. Ann. N. Y. Acad. Sci. 456:36–46

    Google Scholar 

  10. Crane, R.K., Dorando, F.C. 1979. On the mechanism of Na++-dependent glucose transport. In: Functional and Molecular Aspects of Biomembrane Transport. E. Quagliariello et al., editors, pp. 271–278. Elsevier/North-Holland Biomedical, Amsterdam

    Google Scholar 

  11. Crane, R.K., Dorando, F.C. 1982. The kinetics and mechanism of Na++ gradient-coupled transport. In: Membranes and Transport. A. Martonosi, editor. Vol. 2, pp. 153–160. Plenum, New York

    Google Scholar 

  12. Dorando, F.C., Crane, R.K. 1984. Studies of the kinetics of Na++ gradient coupled glucose transport as found in brushborder membrane vesicles from rabbit jejunum. Biochim. Biophys. Acta 772:273–287

    Google Scholar 

  13. Dudeja, P.K., Wali, R.K., Klitzke, A., Brasitus, T.A. 1990. Intestinal d-glucose transport and membrane fluidity along crypt-villus axis of streptozocin-induced diabetic rats. Am. J. Physiol. 259:G571-G577

    Google Scholar 

  14. Freeman, H.J., Johnston, G., Quamme, G.A. 1987. Sodium-dependent d-glucose transport in brush-border membrane vesicles from isolated rat small intestinal villus and crypt epithelial cells. Can. J. Physiol. Pharmacol. 65:1213–1219

    Google Scholar 

  15. Freeman, H.J., Quamme, G.A. 1986. Age-related changes in sodium-dependent glucose transport in small intestine. Am. J. Physiol. 251:G208-G217

    Google Scholar 

  16. Harig, J.M., Barry, J.A., Rajendran, V.M., Soergel, K.H., Ramaswamy, K. 1989. d-glucose and l-leucine transport by human intestinal brush-border membrane vesicles. Am. J. Physiol. 256:G618-G623

    Google Scholar 

  17. Harrison, D., Rowe, G., Lumsden, C.J., Silverman, M. 1984. Computational analysis of models for cotransport. Biochim. Biophys. Acta 774:1–10

    Google Scholar 

  18. Hediger, M.A., Coady, M.J., Ikeda, T.S., Wright, E.M. 1987. Expression cloning and cDNA sequencing of the Na++/ glucose cotransporter. Nature 330:379–381

    Google Scholar 

  19. Honegger, P., Semenza, G. 1973. Multiplicity of carriers for free glucalogues in hamster small intestine. Biochim. Biophys. Acta 318:390–410

    Google Scholar 

  20. Hopfer, U. 1981. Kinetic criteria for carrier-mediated transport mechanisms in membrane vesicles. Fed. Proc. 40:2480–2485

    Google Scholar 

  21. Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membranes from rat small intestine. J. Biol. Chem. 248:25–32

    Google Scholar 

  22. Hwang, E., Hirayama, B., Wright, E.M. 1991. Distribution of the SGLT1 Na++/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem. Biophys. Res. Commun. 181:1208–1217

    Google Scholar 

  23. Karasov, W.H., Diamond, J.M. 1983. Adaptative regulation of sugar and amino acid transport by vertebrate intestine. Am. J. Physiol. 245:G443-G462

    Google Scholar 

  24. Kaunitz, J.D., Gunther, R., Wright, E.M. 1982. Involvement of multiple sodium ions in intestinal d-glucose transport. Proc. Natl. Acad. Sci. USA 79:2315–2318

    Google Scholar 

  25. Kaunitz, J.D., Wright, E.M. 1984. Kinetics of sodium dglucose cotransport in bovine intestinal brush border vesicles. J. Membrane Biol. 79:41–51

    Google Scholar 

  26. Keljo, D.J., MacLeod, R.J., Perdue, M.H., Butler, D.G., Hamilton, J.R. 1985. d-glucose transport in piglet jejunal brush border membranes: insights from a disease model. Am. J. Physiol 249:G751-G760

    Google Scholar 

  27. Kessler, M., Semenza, G. 1983. The small-intestinal Na++, dglucose cotransporter: An asymmetric gated channel (or pore) responsive to ΔΨ. J. Membrane Biol. 76:27–56

    Google Scholar 

  28. Kimmich, G.A. 1990. Membrane potentials and mechanism of intestinal Na++-dependent sugar transport. J. Membrane Biol. 114:1–27

    Google Scholar 

  29. Kimmich, G.A., Randles, J., Restrepo, D., Montrose, M. 1985. A new method for determination of relative ion permeabilities in isolated cells. Am. J. Physiol. 248:C399-C405

    Google Scholar 

  30. Kinne, R., Da Cruz, M.E.M., Lin, J.T. 1984. Sodium-dglucose cotransport system. Biochemical analysis of active sites. Curr. Top. Membr. Trans. 20:245–258

    Google Scholar 

  31. Koepsell, H., Fritzsch, G., Korn, K., Madrala, A. 1990. Two substrate sites in the renal Na++-d-glucose cotransporter studied by model analysis of phlorizin binding and d-glucose transport measurements. J. Membrane Biol. 114:113–132

    Google Scholar 

  32. Koshland, D.E., Jr., Nemethy, G., Filmer, D. 1966. Comparison of experimental binding data and theoretical models in protein containing subunits. Biochemistry 5:365–385

    Google Scholar 

  33. Lazdunski, M. 1972. Flip-flop mechanisms and half-site enzymes. Curr. Top. Cell. Regul. 6:267–309

    Google Scholar 

  34. Levitzki, A. 1978. Quantitative aspects of allosteric mechanisms. Molec. Biol. Biochem. Biophys. 28:1–104

    Google Scholar 

  35. Levitzki, A., Koshland, D.E., Jr. 1976. The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation. Curr. Top. Cell. Regul. 10:1–40

    Google Scholar 

  36. Maenz D.D., Chenu, C., Bellemare, F., Berteloot, A. 1991. Improved stability of rabbit and rat intestinal brush border membrane vesicles using phospholipase inhibitors. Biochim. Biophys. Acta 1069:250–258

    Google Scholar 

  37. Malo, C. 1988. Kinetic evidence for heterogeneity in Na++-dglucose cotransport systems in the normal human fetal small intestine. Biochim. Biophys. Acta 938:181–188

    Google Scholar 

  38. Malo, C. 1990. Separation of two distinct Na++/d-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose. Biochim. Biophys. Acta 1022:8–16

    Google Scholar 

  39. Malo, C., Berteloot, A. 1991. Analysis of kinetic data in transport studies:new insights from kinetic studies of Na++ d-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus. J. Membrane Biol. 122:127–141

    Google Scholar 

  40. Mannervik, B. 1981. Design and analysis of kinetic experiments for discrimination between rival models. In: Kinetic Data Analysis. Design and Analysis of Enzyme and Pharmacokinetic Experiments. L. Endrenyi, editor, pp 235–270. Plenum, New York and London

    Google Scholar 

  41. Monod, J, Wyman, J., Changeux, J.-P. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118

    Google Scholar 

  42. Morrison, A.I., Panayotova-Heiermann, M., Feigl, G., Schlölermann, B., Kinne, R.K.H. 1991. Sequence comparison of the sodium-d-glucose cotransport systems in rabbit renal and intestinal epithelia. Biochim. Biophys. Acta 1089:121–123

    Google Scholar 

  43. Murer, H., Biber, J., Gmaj, P., Stieger, B. 1984. Cellular mechanisms in epithelial transport:advantages and disadvantages of studies with vesicles. Mol. Physiol. 6:55–82

    Google Scholar 

  44. Neet, K.E. 1980. Cooperativity in enzyme function: equilibrium and kinetic aspects. Meth. Enzymol. 64:139–192

    Google Scholar 

  45. Otsu, K., Kinsella, J., Sacktor, B., Froehlich, J.P. 1989. Transient state kinetic evidence for an oligomer in the mechanism of Na++-H++ exchange. Proc. Natl. Acad. Sci. USA 86:4818–4822

    Google Scholar 

  46. Pajor, A., Hirayama, B.A., Wright, E.M. 1992. Molecular evidence for two renal Na++/glucose transporters. Biochim. Biophys. Acta 1106:216–220

    Google Scholar 

  47. Parent, L., Supplisson, S., Loo, D.D.F., Wright, E.M. 1992. Electrogenic properties of the cloned Na++/Glucose cotransporter: I. Voltage-clamp studies. J. Membrane Biol. 125:49–62

    Google Scholar 

  48. Parent, L., Supplisson, S., Loo, D.D.F., Wright, E.M. 1992. Electrogenic properties of the cloned Na++/Glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J. Membrane Biol. 125:63–79

    Google Scholar 

  49. Peerce, B.E., Wright, E.M. 1985. Evidence for hydroxyl residues at the Na++ site on the intestinal Na++-glucose cotransporter. J. Biol. Chem. 260:6026–6031

    Google Scholar 

  50. Peerce, B.E., Wright, E.M. 1986. Distance between substrate sites on the Na-glucose cotransporter by fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 83:8092–8096

    Google Scholar 

  51. Sanders, D. 1986. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-Michaelian kinetics. J. Membrane Biol. 90:67–87

    Google Scholar 

  52. Schmidt, U.M., Eddy, B., Fraser, C.M., Venter, J.C., Semenza, G. 1983. Isolation of (a subunit of) the Na++/dglucose cotransporter(s) of rabbit intestinal brush-border membranes using monoclonal antibodies. FEBS Lett. 161:279–283

    Google Scholar 

  53. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane. Biochim. Biophys. Acta 323:98–112

    Google Scholar 

  54. Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na++-d-glucose cotransporter of the small-intestinal brush-border membrane. Biochim. Biophys. Acta 779:343–379

    Google Scholar 

  55. Silverman, M. 1991. Structure and function of hexose transporters. Annu. Rev. Biochem. 60:757–794

    Google Scholar 

  56. Stevens, B.R., Fernandez, A., Hirayama, B., Wright, E.M., Kempner, E.S. 1990. Intestinal brush border membrane Na++/glucose cotransporter functions in situ as a homotetramer. Proc. Natl. Acad. Sci. USA 87:1456–1460

    Google Scholar 

  57. Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., Hirano, H. 1991. Localization of Na++dependent active type and erythrocyte/HepG2-type glucose transporters in rat kidney: Immunofluorescence and immunogold study. J. Histochem. Cytochem. 39:287–298

    Google Scholar 

  58. Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., Hirano, H. 1992. Immunohistochemical localization of Na++-dependent glucose transporter in rat jejunum. Cell Tissue Res. 267:3–9

    Google Scholar 

  59. Turk, E., Zabel, B., Mundlos, S., Dyer, J., Wright, E.M. 1991. Glucose/galactose malabsorption caused by a defect in the Na++/glucose cotransporter. Nature 350:354–356

    Google Scholar 

  60. Turner, R.J. 1983. Quantitative studies of cotransport systems: models and vesicles. J. Membrane Biol. 76:1–15

    Google Scholar 

  61. Turner, J. 1985. Solution of carrier-type transport models: General solution for an arbitrarily complex rapid equilibrium model. J. Membrane Biol. 88:77–83

    Google Scholar 

  62. Turner, R.J., Moran, A. 1982. Heterogeneity of sodium-dependent d-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. 242:F406F414

    Google Scholar 

  63. Turner, R.J., Moran, A. 1982. Stoichiometric studies of the renal outer cortical brush border membrane d-glucose transporter. J. Membrane Biol. 67:73–80

    Google Scholar 

  64. Turner, R.J., Moran, A. 1982. Further studies of proximal tubular brush border membrane d-glucose transport heterogeneity. J. Membrane Biol. 70:37–45

    Google Scholar 

  65. Wierzbicki, W., Berteloot, A., Roy, G. 1990. Presteadystate kinetics and carrier-mediated transport: a theoretical analysis. J. Membrane Biol. 117:11–27

    Google Scholar 

  66. Wright, E.M., Turk, E., Zabel, B., Mundlos, S., Dyer, J. 1991. Molecular genetics and intestinal glucose transport. J. Clin. Invest. 88:1435–1440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by grant MT-7607 from the Medical Research Council of Canada. One of the authors (A.B.) was supported by a scholarship from the “Fonds de la Recherche en Santé du Québec” and C. C. was supported by a fellowship from the GRTM. The technical assistance of Mrs. C. Leroy has been greatly appreciated. The authors also thank D.D. Maenz and C. Malo for insightful discussions and C. Gauthier for the art work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenu, C., Berteloot, A. Allosterism and Na++-d-glucose cotransport kinetics in rabbit jejunal vesicles: Compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved. J. Membarin Biol. 132, 95–113 (1993). https://doi.org/10.1007/BF00239000

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239000

Key Words

Navigation