Skip to main content
Log in

Has the raphe dorsalis nucleus an asymmetric function?

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Differential pulse voltammetry (DPV) was used to measure 5-hydroxyindoles in the striata of anaesthetized rats. The amplitude of the voltammetry peaks in both striata decreased when 5-hydroxytryptophan (5-HTP) or 5-hydroxytryptamine (5-HT) was injected into the left side of the raphe dorsalis nucleus (RDN), but increased when either substance was injected into the right side. These findings indicate that the 5-hydroxyindole based communication between the striata and the RDN has a lateral asymmetry. The data are discussed with reference to histological observations suggesting a higher density of 5-hydroxyindole containing cell bodies in the lateral region than in the midline of this “unpaired” nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Björklund A, Axelsson S, Falck B (1976) Intraneuronal indolamines in the CNS. Biochem Psychopharmacol 15: 87–94

    Google Scholar 

  • Bogdanski DF, Weissbach H, Udenfriend S (1957) The distribution of serotonin, 5-hydroxytryptophan decarboxylase and monoamine oxidase in brain. J Neurochem 1: 272–278

    Google Scholar 

  • Buda M, Gonon F, Cespuglio R, Jouvet M, Pujol JF (1980) Mesure voltamétrique in vivo de l'acide ascorbique et du DOPAC dans le striatum du rat et du cobaye. CR Acad Sci (Paris) 290: 431–434

    Google Scholar 

  • Cespuglio R, Faradiji H, Riou F, Buda M, Gonon F, Pujol JF, Jouvet M (1981) Differential pulse voltammetry in brain tissue. II. Detection of 5-hydroxyindolacetic acid in the rat striatum. Brain Res 223: 299–311

    Google Scholar 

  • Chernositov AV, Morozova RF (1980) Effect of a monoamine oxidase inhibitor on the level of seizure readiness and functional asymmetry of the brain. Zh Vyss Nerv Deiat 30: 157–164

    Google Scholar 

  • Crespi F, Cespuglio R, Jouvet M (1983) Differential pulse voltammetry in brain tissue. Map of the rat serotoninergic raphe nuclei by electrochemical detection of 5-HIAA. Brain Res 270: 45–54

    Google Scholar 

  • Crespi F, Jouvet M (1982) Sleep and indolamine alterations induced by thiamine deficiency. Brain Res 248: 275–283

    Google Scholar 

  • Dalstrom A, Fuxe K (1964) Evidence for the existence of monoamine containing neurones in the CNS. Acta Physiol Scand 62: Suppl 232, 1

    Google Scholar 

  • Davies J, Tougroach P (1978) Neuropharmacological studies on the nigro-striatal and raphe striatal system in the rat. Eur J Pharmacol 51: 91–100

    Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1982) Fluorescence of catecholamines and related compounds with formaldehyde. J Histochem Cytochem 10: 348–354

    Google Scholar 

  • Gallanger DW, Aghajanian GK (1976) Inhibition of firing or raphe neurones by tryptophan and 5-hydroxytryptophan: blockade by inhibition serotonin synthesis with RO-4–4602. Neuropharmacology 15: 149–156

    Google Scholar 

  • Glick SD, Jerussi TP, Zimmerberg B (1977) Behavioral and neuropharmacological correlates of nigro-striatal asymmetry in rats. In: Lateralisation in the nervous system. Academic Press, New York, pp 213–249

    Google Scholar 

  • Glick SD, Jerussi TP, Waters DH, Green JP (1974) Amphetamine-induced changes in striatal dopamine and acetylcholine levels and relationship to rotation (circling behavior) in rats. Biochem Pharmacol 23: 3223–3225

    Google Scholar 

  • Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) In vivo electrochemical detection of catechols in the rat neostriatum: dopamine or DOPAC? Nature 286: 902–904

    Google Scholar 

  • Groot J De (1959) The rat forebrain in stereotaxic coordinates. Trans R Meth Sci 52: 40 pp

    Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M (1973) Immunohistochemical localisation of aromatic L-amino acid decarboxylax (DOPA decarboxylax) in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat. Brain Res 53: 175–180

    Google Scholar 

  • Jacobs BL, Wide WD, Taylor KM (1974) Differential behavioral and neurochemical effects following lesions of the dorsal or medial raphe nuclei in rats. Brain Res 79: 353–361

    Google Scholar 

  • Jerussi TP, Glick SD (1976) Drug-induced rotation in rats without lesions: behavioral and neurochemical indices of a normal asymmetry in nigro-striatal function. Psychopharmacology 47: 249–260

    Google Scholar 

  • Knapp S, Mandell J (1979) Lithium and chlorimipramine differentially alter bilateral asymmetry in mesostriatal serotonin metabolites and kinetic conformations of midbrain tryp-tophan hydroxylase with respect to tetraydrobiopterin cofactor. Neuropharmacology 19: 1–7

    Google Scholar 

  • Koenig JFR, Klippel RA (1963) In: The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore, 162

    Google Scholar 

  • Miller JJ, Richardson TL, Fibiger HC, Mc Lennan H (1975) Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res 97: 133–139

    Google Scholar 

  • Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164: 171–184

    Google Scholar 

  • Nicoullon A, Cheramy A, Glowinsky J (1977) Nigral and striatal dopamine release under sensory stimuli. Nature 269: 340–342

    Google Scholar 

  • Palkovitz M, Brownstein M, Saavedra JM (1974) Serotonin content of the brain stem nuclei in the rat. Brain Res 80: 237–249

    Google Scholar 

  • Robinson R, Coyle J (1980) The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat. Brain Res 188: 63–78

    Google Scholar 

  • Soubrie P, Blas C, Ferron A, Glowinski J (1983) Chlordiazepoxide reduces in vivo serotonin release in the basal ganglia of encephale isole evidence for a dorsal raphe site of action. J Pharmacol Exp Ther 226: 526–532

    Google Scholar 

  • Starr MS, Kilpatrick IC (1981) Bilateral asymmetry in brain GABA function? Neurosci Lett 25: 167–171

    Google Scholar 

  • Steinbusch HWM, van der Kooy D, Verhofstad AAJ, Pellegrino A (1980) Serotonergic and non serotonergic projections from the nucleus raphe dorsalis to the caudate-putamen complex in the rat, studies by a combined immunofluorescence and fluorescent retrograde axonal labeling technique. Neurosci Lett 19: 137–142

    Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R, Verhofstad AAJ, van der Kooy D (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudate-putamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol (Lond) 77: 157–174

    Google Scholar 

  • Ternaux JP, Hery F, Bourgoin S, Adrien J, Glowinsky J, Haman M (1977) The topographical distribution of serotoninergic terminals in the neostriatum of the rat and the caudate nucleus of the cat. Brain Res 121: 311–326

    Google Scholar 

  • Van der Kooy D (1979) The organisation of the thalamic nigral and raphe cells projecting to the medial VS lateral caudate-putamen in rat, a fluorescent retrograde double labeling study in the rat. Brain Res 169: 381–387

    Google Scholar 

  • Van der Kooy D, Hattori T (1980) Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res 186: 1–7

    Google Scholar 

  • Wang RY, Aghajanian GK (1978) Collateral inhibition of serotonergic neurons in the rat dorsal raphe nucleus: pharmacological evidence. Pharmacology 17: 819–825

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespi, F., Jouvet, M. Has the raphe dorsalis nucleus an asymmetric function?. Exp Brain Res 56, 403–409 (1984). https://doi.org/10.1007/BF00237981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237981

Key words

Navigation