Skip to main content
Log in

Formation of synaptic vesicles in the superior cervical ganglion of cat: choline dependency

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

De novo formation of synaptic vesicles was studied electron microscopically in synapses of the superior cervical ganglion of cat. Following prolonged electrical stimulation in a choline deficient condition, almost complete loss of vesicle content was observed. After choline administration, together with the partial restoration of transmission, the reappearance of vesicles could be seen in nerve terminals. In interpreting our observations, the double role of choline (transmitter precursor and membrane constituent) is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansell GB, Spanner S (1978) The source of choline for acetylcholine synthesis. In: Jenden DJ (ed) Cholinergic mechanisms and psychopharmacology. Plenum Press, New York, pp 431–445

    Google Scholar 

  • Birks RI (1974) The relationship of transmitter release and storage to fine structure in a sympathetic ganglion. J Neurocytol 3: 133–160

    Google Scholar 

  • Blusztajn JK, Wurtmann RJ (1983) Choline and cholinergic neurons. Science 221: 614–620

    Google Scholar 

  • Blusztajn JK, Maire JC, Tacconi MT, Wurtman RJ (1984) The possible role of neuronal choline metabolism in the pathophysiology of Alzheimer's disease: a hypothesis. In: Wurtman RJ, Corkin SH, Growdon JH (eds) Alzheimer's disease: advances in basic research and therapies. Center for Brain Sciences and Metabolism Charitable Trust, pp 183–198

  • Bosmann HB, Hemsworth BA (1970) Synaptic vesicles. Incorporation of choline by isolated synaptosomes and synaptic vesicles. Biochem Pharmacol 19: 133–141

    Google Scholar 

  • Boyne AF, Bohan TP, Williams TH (1975) Changes in cholinergic synaptic vesicle populations and the ultrastructure of the nerve terminals of Narcine brasiliensis electric organ stimulated to fatigue in vivo. J Cell Biol 67: 814–825

    Google Scholar 

  • Collier B, Lang C (1969) The metabolism of choline by a sympathetic ganglion. Can J Physiol Pharmacol 47: 119–126

    Google Scholar 

  • Del Castillo J, Katz B (1957) La base “quantale” de la transmission neuromusculaire. Coll Int CNRS 67: 245–258

    Google Scholar 

  • De Robertis EDP, Bennett HS (1955) Some features of the submicroscopic morphology of synapse in frog and earthworm. J Biophys Biochem Cytol 1: 47–58

    Google Scholar 

  • De Robertis EDP, Ferreira AV (1957) Submicroscopic changes of the nerve endings in the adrenal medulla after stimulation of the splanchnic nerve. J Biophys Biochem Cytol 3: 611–614

    Google Scholar 

  • Hattori H, Kanfer JN (1984) Synaptosomal phospholipase D: potential role in providing choline for acetylcholine synthesis. Fed Proc 43: 1458

    Google Scholar 

  • Heilbronn E (1972) Action of phospholipase A on synaptic vesicles. A model for transmitter release? Prog Brain Res 36: 29–40

    Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57: 315–344

    Article  CAS  PubMed  Google Scholar 

  • Israel M, Dunant Y, Manaranche R (1979) The present status of the vesicular hypothesis. Prog Neurobiol 13: 237–275

    Google Scholar 

  • Kibjakov AV (1933) Über humorale Übertragung der Erregung von einem Neuron auf das andere. Pflüger's Arch Ges Physiol 232: 432–443

    Google Scholar 

  • Moskowitz N, Schook W, Puszkin S (1982) Interaction of brain synaptic vesicles induced by endogenous Ca2+ dependent phospholipase A2. Science 216: 305–307

    Google Scholar 

  • McCarty LP, Knight AS, Chenoweth MB (1973) Incorporation of (14C)choline into phospholipids in the isolated phrenic nervediaphragm preparation of the rat. J Neurochem 20: 487–494

    Google Scholar 

  • Palade GE (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 118: 335–336

    Google Scholar 

  • Parducz A, Feher O, Joó F (1971) Effects of stimulation and hemicholinum (HC-3) on the fine structure of nerve endings in the superior cervical ganglion of the cat. Brain Res 34: 61–72

    Google Scholar 

  • Parducz A, Joó F, Feher O (1974) The role of choline in maintaining the fine structure of nerve terminals in the superior cervical ganglion of cat. J Neur Transm Suppl XI: 299–314

    Google Scholar 

  • Parducz A, Kiss Z, Joó F (1976) Changes of the phosphatidylcholine content and the number of synaptic vesicles in relation to the neurohumoral transmission in sympathetic ganglia. Experientia 32: 1520–1521

    Google Scholar 

  • Paton WDM, Perry WLM (1953) The relationship between depolarisation and block in the cat's superior cervical ganglion. J Physiol (Lond) 119: 43–57

    Google Scholar 

  • Pysh JJ, Wiley RG (1972) Morphologic alterations of synapses in electrically stimulated superior cervical ganglion of the cat. Science 176: 191–193

    Google Scholar 

  • Pysh JJ, Wiley RG (1974) Synaptic vesicle depletion and recovery in cat sympathetic ganglia electrically stimulated in vivo. J Cell Biol 60: 365–374

    Google Scholar 

  • Schmidt DE, Wecker L (1981) CNS effects of choline administration: evidence for temporal dependence. Neuropharmacol 20: 535–539

    Google Scholar 

  • Sjöstrand FS (1953) Ultrastructure of retinal rod synapses of guinea-pig eye. J Appl Phys 24: 1422–1423

    Google Scholar 

  • Zimmermann H (1979) Commentary: vesicle recycling and transmitter release. Neuroscience 4: 1773–1803

    Google Scholar 

  • Zimmermann H, Whittaker VP (1974) Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of torpedo: combined biochemical electrophysiological and morphological study. J Neurochem 22: 435–450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parducz, A., Joó, F. & Toldi, J. Formation of synaptic vesicles in the superior cervical ganglion of cat: choline dependency. Exp Brain Res 63, 221–224 (1986). https://doi.org/10.1007/BF00235667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235667

Key words

Navigation