Skip to main content
Log in

Activation by hyperpolarization and atypical osmosensitivity of a Cl current in rat osteoblastic cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

During whole-cell recording of rat osteoblastic cells with high-Cl internal solutions, 10 sec hyperpolarizing jumps from 0 mV induce a slow inward current relaxation, which is shown to be carried by hyperpolarization-activated Cl channels. This relaxation increases and becomes faster with stronger hyperpolarizations. It is insensitive to Cs+ ions but is blocked in a voltage-dependent manner by 4,4′-diisothiocyanatostilbene-2, 2′-disulfonic acid (DIDS) 1 mm and is reduced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) 0.1 mm. Cd2+ ions are potent blockers of this current, blocking completely above 300 μm. The amplitude of the Cl current activated by a given hyperpolarization increases during the first 10–20 min of whole-cell recording. This evolution and the fact that some recently cloned Cl channels have been reported to be activated both by hyperpolarization and by external hyposmolarity led us to investigate the effects of external osmolarity. Reducing the external osmolarity induces a large Cl current. However, this hyposmolarity-induced Cl current and the hyperpolarization-activated Cl current are shown to be distinct; 1,9-dideoxy forskolin selectively blocks the hyposmolarity-activated current. We show that the hyperpolarization-activated Cl current is osmosensitive, but in an unusual way: it is reduced by external hyposmolarity and is increased by external hyperosmolarity. Furthermore, these modulations are more pronounced for small hyperpolarizations. The osmosensitivity of the hyperpolarization-activated Cl current suggests a mechanosensitivity (activation by positive external pressure) that is likely to be physiologically important to bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amagai, Y., Kasai, S. 1989. A voltage-dependent calcium current in mouse MC3T3-E1 osteogenic cells. Jap. J. Physiol. 39:773–777

    Google Scholar 

  2. Banderali, U., Roy, G. 1992. Activation of K+ and Cl channels in MDCK cells during volume regulation in hypotonic media. J. Membrane Biol. 126:219–234

    Google Scholar 

  3. Bauer, C.K., Steinmeyer, K., Schwarz, J.R., Jentsch, T.J. 1991. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc. Natl. Acad. Sci. USA 88:11052–11056

    Google Scholar 

  4. Block, ML., Moody, W.J. 1990. A voltage-dependent chloride current linked to the cell cycle in ascidian embryos. Science 247:1090–1092

    Google Scholar 

  5. Chan, H.C., Goldstein, J., Nelson, D.J. 1992. Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am. J. Physiol. 262:C1273-C1283

    Google Scholar 

  6. Chan, H.C., Nelson, D.J. 1992. Chloride-dependent cation conductance activated during cellular shrinkage. Science 257:669–671

    Google Scholar 

  7. Chesnoy-Marchais, D. 1982. A Cl conductance activated by hyperpolarization in Aplysia neurones. Nature 299:359–361

    Google Scholar 

  8. Chesnoy-Marchais, D. 1983. Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurones. J. Physiol. 342:277–308

    Google Scholar 

  9. Chesnoy-Marchais, D., Evans, M. 1986. Chloride channels activated by hyperpolarization in Aplysia neurones. Pfluegers Arch. 407:694–696

    Google Scholar 

  10. Chesnoy-Marchais, D., Fritsch, J. 1988. Voltage-gated sodium and calcium currents in rat osteoblasts. J. Physiol. 398:291–311

    Google Scholar 

  11. Chesnoy-Marchais, D., Fritsch, J. 1989. Chloride current activated by cyclic AMP and parathyroid hormone in rat osteoblasts. Pfluegers Arch. 415:104–114

    Google Scholar 

  12. Chesnoy-Marchais, D., Fritsch, J. 1993. Potassium currents and effects of vitamin D3 metabolites and cyclic GMP in rat osteoblastic cells. Biochim. Biophys. Acta 1148:239–248

    Google Scholar 

  13. Chow, S.Y., Chow, Y.C., Jee, W.S.S., Woodbury, D.M. 1984. Electrophysiological properties of osteoblastlike cells from the cortical endosteal surface of rabbit long bones. Calcif. Tissue Int. 36:401–408

    Google Scholar 

  14. Christensen, O., Hoffmann, E.K. 1992. Cell swelling activates K+ and Cl channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells. J. Membrane Biol. 129:13–36

    Google Scholar 

  15. Davidson, R.M., Tatakis, D.W., Auerbach, A.L. 1990. Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pfluegers Arch. 416:646–651

    Google Scholar 

  16. Davidson, R.M. 1993. Membrane stretch activates a high-conductance K+ channel in G292 osteoblastic-like cells. J. Membrane Biol. 131:81–92

    Google Scholar 

  17. Diaz, M., Valverde, M.A., Higgins, C.F., Rucareanu, C., Sepúlveda, F.V. 1993. Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pfluegers Arch. 422:347–353

    Google Scholar 

  18. Diener, M., Nobles, M., Rummel, W. 1992. Activation of basolateral Cl channels in the rat colonic epithelium during regulatory volume decrease. Pfluegers Arch. 421:530–538

    Google Scholar 

  19. Di Francesco, D. 1985. The cardiac hyperpolarizing-activated current, i f. Origins and developments. Prog. Biophys. Mol. Biol. 46:163–183

    Google Scholar 

  20. Di Francesco, D. 1991. The contribution of the “pacemaker” current (i f) to generation of spontaneous activity in rabbit sinoatrial node myocytes. J. Physiol. 434:23–40

    Google Scholar 

  21. Doroshenko, P., Neher, E. 1992. Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J. Physiol. 449:197–218

    CAS  PubMed  Google Scholar 

  22. Duncan, R., Misler S., 1989. Voltage-activated and stretch-activated Ba2+ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett. 251:17–21

    Google Scholar 

  23. Ferrier, J., Ward-Kesthely, A., Homble, F., Ross, S. 1987. Further analysis of spontaneous membrane potential activity and the hyperpolarizing response to parathyroid hormone in osteoblastlike cells. J. Cell. Physiol. 130:344–351

    Google Scholar 

  24. Fritsch, J., Grosse, B., Lieberherr, M., Balsan, S. 1985. 1,25-dihydroxyvitamin D3 is required for growth-independent expression of alkaline phosphatase in cultured rat osteoblasts. Calcif. Tissue Int. 37:639–645

    Google Scholar 

  25. Gründer, S., Thiemann, A., Pusch, M., Jentsch, T.J. 1992. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759–762

    Google Scholar 

  26. Grygorczyk, C., Grygorczyk, R., Ferrier, J. 1989. Osteoblastic cells have L-type calcium channels. Bone Min. 7:137–148

    Google Scholar 

  27. Guggino, S.E., Lajeunesse, D., Wagner, J.A., Snyder, S.H. 1989. Bone remodeling signaled by a dihydropyridineand phenylalkylamine-sensitive calcium channel. Proc. Natl. Acad. Sci. USA 86:2957–2960

    Google Scholar 

  28. Hisada, T., Ordway, R.W., Kirber, M.T., Singer, J.J., Walsh, J.V. 1991. Hyperpolarization-activated cationic channels in smooth muscle cells are stretch sensitive. Pfluegers Arch. 417:493–499

    Google Scholar 

  29. Hoffmann, E.K., Simonsen, L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–382

    Google Scholar 

  30. Jentsch, T.J., Steinmeyer, K., Schwarz, G. 1990. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514

    Google Scholar 

  31. Kubitz, R., Warth, R., Allert, N., Kunzelmann, K., Greger, R. 1992. Small-conductance chloride channels induced by cAMP, Ca2+, and hypotonicity in HT29 cells: ion selectivity, additivity and stilbene sensitivity. Pfluegers Arch. 421:447–454

    Google Scholar 

  32. Kubo, M, Okada, Y. 1992. Volume-regulatory Cl channel currents in cultured human epithelial cells. J. Physiol. 456:351–371

    Google Scholar 

  33. Lewis, R.S., Ross, P.E., Cahalan, M.D. 1993. Chloride channels activated by osmotic stress in T lymphocytes. J. Gen. Physiol. 101:801–826

    Google Scholar 

  34. Madison, D.V., Malenka, R.C., Nicoll, R.A. 1986. Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321:695–697

    Google Scholar 

  35. Mc Cann, J.D., Li, M., Welsh, M.J. 1989. Identification and regulation of whole-cell chloride currents in airway epithelium. J. Gen. Physiol. 94:1015–1036

    Google Scholar 

  36. Mc Cormick, D.A., Pape, H.C. 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 431:291–318

    Google Scholar 

  37. Miller, C., Richard, E.A. 1990. The voltage-dependent chloride channel of Torpedo electroplax. In: Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. F.J. Alvarez-Leefmans, J.J. Russell, editors, pp. 383–405. Plenum, New York and London

    Google Scholar 

  38. Moorman, J.R., Palmer, C.J., John, J.E., III, Durieux, M.E., Jones, L.R. 1992. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J. Biol. Chem. 267:14551–14554

    Google Scholar 

  39. Morain, P., Peglion, J.L., Giesen-Grouse, E. 1992. Ca2+ channel inhibition in a rat osteoblast-like cell line, UMR 106, by a new dihydropyridine derivative, S11568. Eur. J. Pharmacol. 220:11–17

    Google Scholar 

  40. Oliet, S.H.R., Bourque, C.W. 1993. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364:341–343

    Google Scholar 

  41. Pahapill, P.A., Schlichter, L.C. 1992. Cl channels in intact human T lymphocytes. J. Membrane Biol. 125:171–183

    Google Scholar 

  42. Parker, I., Miledi, R. 1988. A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proc. R. Soc. Lond. B233:191–199

    Google Scholar 

  43. Rae, J.L., Farrugia, G. 1992. Whole-cell potassium current in rabbit corneal epithelium activated by fenamates. J. Membrane Biol. 129:81–97

    Google Scholar 

  44. Ravesloot, J.H., Van Houten, R.J., Ypey, D.L., Nijweide, P.J. 1990. Identification of Ca2+-activated K+ channels in cells of embryonic chick osteoblast cultures. J. Bone Miner. Res. 5:1201–1210

    Google Scholar 

  45. Sansom, S.C., La, B., Carosi, S.L. 1990. Double-barreled chloride channels of collecting duct basolateral membrane. Am. J. Physiol. 259:F46-F52

    Google Scholar 

  46. Scherübl, H., Hescheler, J. 1992. Transient membrane hyperpolarizations due to spontaneous fluctuations of the cytosolic Ca2+ in osteoblast-like cells. Pfluegers Arch. 420:109–111

    Google Scholar 

  47. Sekiguchi, K., Tsukuda, M., Ase, K., Kikkawa, U., Nishizuga, Y. 1988. Mode of activation and kinetic properties of three distinct forms of protein kinase C from rat brain. J. Biochem. 103:759–765

    Google Scholar 

  48. Selyanko, A.A. 1984. Cd2+ suppresses a time-dependent Cl current in a mammalian sympathetic neurone. J. Physiol. 350:49 P

    Google Scholar 

  49. Solc, C.K., Wine, J.J. 1991. Swelling-induced and depolarization-induced Cl channels in normal and cystic fibrosis epithelial cells. Am. J. Physiol. 261:C658-C674

    Google Scholar 

  50. Taglietti, V., Tanzi, F., Romero, R., Simoncini, L. 1984. Maturation involved removal of voltage-gated currents in the frog oocyte. J. Cell. Physiol. 121:576–588

    Google Scholar 

  51. Thiemann, A., Gründer, S., Pusch, M., Jentsch, T.J. 1992. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60

    Google Scholar 

  52. Tseng, G.N. 1992. Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am. J. Physiol. 262:C1056-C1068

    Google Scholar 

  53. Valverde, M.A., Diaz, M., Sepúlveda, F.V., Gill, D.R., Hyde, S.C., Higgins, C.F. 1992. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 355:830–833

    Article  CAS  PubMed  Google Scholar 

  54. Worrell, R.T., Butt, A.G., Cliff, W.H., Frizzell, R.A. 1989. A volume-sensitive chloride conductance in human colonic cell line T84. Am. J. Physiol. 256:C1111-C1119

    Google Scholar 

  55. Yagiela, J.A., Woodbury, D.M. 1977. Enzymatic isolation of osteoblasts from fetal rat calvaria. Anat. Rec. 188:287–306

    Google Scholar 

  56. Yang, X.C., Sachs, F. 1989. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Google Scholar 

  57. Yantorno, R.E., Carré, D.A., Coca-Prados, M., Krupin, T., Civan, M.M. 1992. Whole-cell patch clamping of ciliary epithelial cells during anisosmotic swelling. Am. J, Physiol. 262:C501-C509

    Google Scholar 

  58. Ypey, D., Ravesloot, J., Buisman, M., Nijweide, P. 1988. Voltage-activated ionic channels and conductances in embryonic chick osteoblast cultures. J. Membrane Biol. 101:141–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank P. Ascher and B. Barbour for useful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesnoy-Marchais, D., Fritsch, J. Activation by hyperpolarization and atypical osmosensitivity of a Cl current in rat osteoblastic cells. J. Membarin Biol. 140, 173–188 (1994). https://doi.org/10.1007/BF00233706

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233706

Key words

Navigation