Skip to main content
Log in

Does active transport exist?

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Conclusion

Since its publication, the two-membrane theory has been generally accepted as a prototype of a transporting epithelium. It should be remembered, however, that whereas it gives a quantitative measure of the active sodium transport, the coupling ratio between Na transport and K recycling has to be estimated by other methods (see Skou, 1957). We are reminded of our initial conclusion: that active transport can only be observed with certainty in systems where net transport of the species in question is going on.

Also, the procedures described in the foregoing are powerful only for tight epithelia where paracellular shunt paths can be neglected.

The finding (Ussing, 1978; Sten-Knudsen & Ussing, 1981) that the flux ratio is time independent, i.e., constant from the first appearance of the tracers on the “receiving” side, makes it possible, at least theoretically, to analyze multipathway systems like leaky epithelia (see, for example, Ussing & Eskesen, 1989 and Ussing & Nedergaard, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyle, P.J., Conway, E.J. 1941. Potassium accumulation in muscle and associated changes. J. Physiol. 100:1–63

    Google Scholar 

  • Conway, E.J. 1955. Evidence for a redox pump in the active transport of cations. Int. Rev. Cytol. 4:377–396

    Google Scholar 

  • Dean, R.B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3:331–348

    Google Scholar 

  • DuBois-Reymond, E. 1848. Untersuchungen über Tierische Elektrizität, Berlin

  • Galeotti, G. 1904. Concerning the E.M.F. which is generated at the surface of animal membranes on contact with different electrolytes. Z. Phys. Chem. 49:542–562

    Google Scholar 

  • Goldman, D.E. 1944. Potential, impedance and rectification in membranes. J. Physiol. 27:37–60

    Google Scholar 

  • Hevesy, G., Hahn, L. 1941. Exchange of cellular potassium. Kgl. danske Vidensk. Selsk. Biol. Medd. 16:1–27

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., Katz, B. 1949. Ionic currents' underlying activity in the giant axon of the squid. Arch. Sci. Physiol. 3:129–150

    Google Scholar 

  • Hoshiko, T., Engbæk, L. 1956. Microelectrode study of the frog skin potential. In: Abstr. Commun, 20th Int. Physiol. Congr., p. 433. Brussels

  • Huf, E. 1935. Versuche über den Zusammenhang zwischen Stoffwechsel, Potentialbildung und Funktion der Froschhaut. Pfluegers Arch. 235:655–673

    Google Scholar 

  • Jørgensen, B.C., Levi, H., Ussing, H.H. 1946. On the influence of neurohypophyseal principles on the sodium metabolism in the axolotl (Ambystoma mexicanum). Acta Physiol. Scand. 12:350–371

    Google Scholar 

  • Katzin, L.J. 1940. The use of radioactive tracers in the determination of irreciprocal permeability of biological membranes. Biol. Bull. 79:342

    Google Scholar 

  • Koefoed-Johnsen, V., Levi, H., Ussing, H.H. 1952. The mode of passage of chloride ions through the isolated frog skin. Acta Physiol. Scand. 28:150–163

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1953. The contributions of diffusion and flow to the passage of D2O through living membranes. Acta Physiol. Scand. 28:60–76

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential. Acta Physiol. Scand. 42:298–308

    Google Scholar 

  • Kristensen, P. 1981. Is chloride transfer in frog skin localized to a special cell type? Acta Physiol. Scand. 113:123–124

    Google Scholar 

  • Krogh, A. 1937. Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ions. Scand. Arch. Physiol. 76:60–74

    Google Scholar 

  • Krogh, A. 1938. The active absorption of ions in some fresh water animals. Z. Vgl. Physiol. 25:335–350

    Google Scholar 

  • Krogh, A. 1946. The active and passive exchange of inorganic ions through the surface of living cells and through living membranes generally. Proc. R. Soc. Lond. B Biol. Sci. 131–200

  • Leaf, A., Renshaw, A. 1957. Ion transport and respiration of isolated frog skin. Biochem. J. 65:82–90

    Google Scholar 

  • Levi, H., Ussing, H.H. 1948. The exchange of sodium and chloride across the fibre membrane of the isolated frog sartorius. Acta Physiol. Scand. 16:232–249

    Google Scholar 

  • Linderholm. 1954. On the behaviour of the “sodium pump” in frog skin at various concentrations of Na ions in the solution on the epithelial side. Acta Physiol. Scand. 31:36–61

    Google Scholar 

  • Lund, E.J., Stapp, P. 1947. Biocoulometry 1. Use of iodine coulometer in the measurement of bioelectrical energy and the efficiency of the bioelectrical process. In: Bioelectric Fields and Growth; pp. 235–280. University of Texas, Austin

    Google Scholar 

  • Meyer, K., Bernfeld, P. 1946. The potentiometric analysis of membrane structure and its application to living animal membranes. J. Gen. Physiol. 29:353–378

    Google Scholar 

  • Ottosen, D., Sjöstrand, F., Stenström, S., Swaetichin, G. 1953. Microelectrode studies on the EMF of the frog skin related to electron microscopy of the dermoepidermal junction. Acta Physiol. Scand. 29, Suppl. 106:611–624

    Google Scholar 

  • Skou, J.C. 1957. The influence of some cations on adenosine-triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  • Sten-Knudsen, O., Ussing, H.H. 1981. The flux ratio equation under nonstationary conditions. J. Membrane Biol. 63:233–242

    Google Scholar 

  • Teorell, T. 1949. Membrane electrophoresis in relation to bioelectrical polarization effects. Arch. Sci. Physiol. 3:205–219

    Google Scholar 

  • Ussing, H.H. 1938. Use of amino acids containing deuterium to follow protein production in the organism. Nature 142:399

    Google Scholar 

  • Ussing, H.H. 1941. The rate of protein renewal in mice and rats studied by means of heavy hydrogen. Acta Physiol. Scand. 2:209–221

    Google Scholar 

  • Ussing, H.H. 1947. Interpretation of the exchange of radio-sodium in the isolated muscle. Nature 160:262

    Google Scholar 

  • Ussing, H.H. 1948. The use of tracers in the study of active ion transport across animal membranes. Cold Springs Harbor Symp. Quant. Biol. 13:193–200

    Google Scholar 

  • Ussing, H.H. 1949a. The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol. Scand. 17:1–37

    Google Scholar 

  • Ussing, H.H. 1949b. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19:43–56

    Google Scholar 

  • Ussing, H.H. 1952. Some aspects of the application of tracers in permeability studies. Adv. Enzymol. 13:21–65

    Google Scholar 

  • Ussing, H.H. 1978. Interpretation of tracer fluxes. In: Membrane Transport in Biology. Vol. 1, pp. 115–140. Springer-Verlag, Berlin

    Google Scholar 

  • Ussing, H.H., Eskesen, K. 1989. Mechanism of isotonic water transport in glands. Acta Physiol. Scand. 136:443–454

    Google Scholar 

  • Ussing, H.H., Koefoed-Johnsen, V. 1956. Nature of the frog skin potential. In: Abstr. Commun. 20th Int. Physiol. Congr. Vol. 2, p. 511. Brussels

  • Ussing, H.H., Kruhoffer, P., Hess Thaysen, J., Thorn, N.A. 1960. The alkali metal ions in biology. In: Handbuch der Experimentellen Pharmakologie. Erganzungswerk. Vol. 13, pp. 1–597. Springer-Verlag, Berlin, Göttingen, Heidelberg

    Google Scholar 

  • Ussing, H.H., Nedergaard, S. 1993. Recycling of electrolytes in small intestine of toad. In: Isotonic Transport in Leaky Epithelia. Alfred Benzon Symp. 34, pp. 25–34. Munksgaard, Copenhagen

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23:110–127

    Google Scholar 

  • Voûte, C.L., Meier, W. 1978. The mitochondria-rich cell of frog skin as hormone-sensitive “shunt path.” J. Membrane Biol. SI40:151–165

    Google Scholar 

  • Zerahn, K. 1956. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol. Scand. 36:300–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ussing, H.H. Does active transport exist?. J. Membarin Biol. 137, 91–98 (1994). https://doi.org/10.1007/BF00233478

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233478

Key words

Navigation