Skip to main content
Log in

Ion selectivity of colicin E1: III. Anion permeability

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The antibiotic protein colicin E1 forms ion channels in planar lipid bilayers that are capable of conducting monovalent organic cations having mean diameters of at least 9 Å. Polyvalent organic cations appear to be completely impermeant, regardless of size. All permeant ions, whether large or small, positively or negatively charged, are conducted by this channel at very slow rates. We have examined the permeability of colicin E1 channels to anionic probes having a variety of sizes, shapes, and charge distributions. In contrast to the behavior of cations, polyvalent as well as monovalent organic anions were found to permeate the colicin E1 channel. Inorganic sulfate was able to permeate the channel only when the pH was 4 or less, conditions under which the colicin E1 protein is predominantly in an anion-preferring conformational state. The less selective state(s) of the colicin E1 channel, observed when the pH was 5 or greater, was not permeable to inorganic sulfate. The sulfate salt of the impermeant cation Bis-T6 (N,N,N′,N′-tetramethyl-1,6-hexanediamine) had no effect on the single channel conductance of colicin E1 channels exposed to solutions containing 1 m NaCl at pH 5. The complete lack of blocking activity by either of these two impermeant ions indicates that both are excluded from the channel lumen. These results are consistent with our hypothesis that there is but a single location in the lumen of the colicin E1 channel where positively charged groups can be effectively hydrated. This site may coincide with the location of the energetic barrier which impedes the movement of anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, C.K., Jakes, K.S., Finkelstein, A., Slatin, S.L. 1991. Identification of a translocated gating charge in a voltage-dependent channel. Colicin E1 channels in planar phospholipid bilayer membranes. J. Gen. Physiol. 98:77–93

    Google Scholar 

  2. Armstrong, C.M. 1975. K pores of nerve and muscle membranes. In: Membranes: A Series of Advances. G. Eisenman, editor. Vol. 3 pp. 325–358. Marcel Dekker, New York

    Google Scholar 

  3. Baty, D., Knibiehler, M., Verheij, H., Pattus, F., Shire, D., Bernadac, A., Lazdunski, C. 1987. Site-directed mutagenesis of the COOH-terminal region of colicin A: Effect on secretion and voltage-dependent channel activity. Proc. Natl. Acad. Sci. USA. 84:1152–1156

    Google Scholar 

  4. Benz, R., Schmid, A., Hancock, R.E.W. 1985. Ion selectivity of Gram-negative bacterial porins. J. Bacteriol. 162:722–727

    Google Scholar 

  5. Bishop, L.J., Cohen, F.S., Davidson, V.L., Cramer, W.A. 1986. Chemical modification of two histidine and single cysteine residues in the channel-forming domain of colicin E1. J. Membrane Biol. 92:237–245

    Google Scholar 

  6. Bullock, J.O. 1991. Ion selectivity of colicin E1: Modulation by pH and membrane composition. J. Membrane Biol. 125:255–271

    Google Scholar 

  7. Bullock, J.O., Armstrong, S.K., Shear, J.L., Lies, D.P., McIntosh, M.A. 1990. Formation of ion channels by colicin B in planar lipid bilayers. J. Membrane Biol. 114:79–95

    Google Scholar 

  8. Bullock, J.O., Cohen, F.S. 1986. Octyl glucoside promotes incorporation of channel into neutral planar phospholipid bilayers. Studies with colicin Ia. Biochim. Biophys. Acta 856:101–108

    Article  CAS  PubMed  Google Scholar 

  9. Bullock, J.O., Cohen, F.S., Dankert, J.R., Cramer, W.A. 1983. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J. Biol. Chem. 258:9908–9912

    Google Scholar 

  10. Bullock, J.O., Kolen, E.R. 1992. Anion permeability of colicin E1 in planar lipid bilayers. Biophys. J. 61:A114

    Google Scholar 

  11. Bullock, J.O., Kolen, E.R., Shear, J.L. 1992. Ion selectivity of colicin E1: Permeability to organic cations. J. Membrane Biol. 128:1–16

    Google Scholar 

  12. Chan, P.T. Ohmori, H., Tomizawa, J., Lebowitz, J. 1985. Nucleotide sequence and gene organization of ColE1 DNA. J. Biol. Chem. 260:8925–8935

    Google Scholar 

  13. Chen, D., Eisenberg, R.S. 1993. Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 64:1405–1421

    Google Scholar 

  14. Collarini, M., Amblard, G., Lazdunski, C., Pattus, F. 1987. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers. Eur. Biophys. J. 14:147–153

    Google Scholar 

  15. Coronado, R., Miller, C. 1982. Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers. J. Gen. Physiol. 79:529–547

    Google Scholar 

  16. Cramer, W.A., Cohen, F.S., Merrill, A.R., Song, H.Y. 1990. Dynamic properties of the colicin E1 ion channel. Molec. Microbiol. 4:519–526

    Google Scholar 

  17. Dwyer, T.M., Adams, D.J., Hille, B. 1980. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75:469–492

    Google Scholar 

  18. Erdahl, W.L., Stolyhwo, A., Privett, O.S. 1973. Analysis of soybean lecithin by thin layer and analytical liquid chromatography. J. Am. Oil Chem. Soc. 50:513–515

    Google Scholar 

  19. Hille, B. 1975. Ion selectivity of Na and K channels of nerve membrane. In: Membranes: A Series of Advances. G. Eisenman, editor. Vol. 3 pp. 225–323. Marcel Dekker, New York

    Google Scholar 

  20. Jakes, K.S., Abrams, C.K., Finkelstein, A., Slatin, S.L. 1990. Alteration of the pH-dependent ion selectivity of the colicin E1 channel by site-directed mutagenesis. J. Biol. Chem. 265:6984–6991

    Google Scholar 

  21. Liu, Q.R., Crozel, V., Levinthal, F., Slatin, S., Finkelstein, A., Levinthal, C. 1986. A very short peptide makes a voltage-dependent ion channel: The critical length of the channel domain of colicin E1. Proteins 1:218–229

    Google Scholar 

  22. Mankovich, J.A., Hsu, C.-H., Konisky, J. 1986. DNA and amino acid sequence analysis of the structural and immunity genes of colicin Ia and Ib. J. Bacteriol. 168:228–236

    Google Scholar 

  23. Martell, A.E., Smith, R.M. 1974. Critical Stability Constants. Vol. 1–6. Plenum, New York

    Google Scholar 

  24. Martinez, C., Lazdunski, C., Pattus, F. 1983. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J. 2:1501–1517

    Google Scholar 

  25. Mel, S.F., Falick, A.M., Burligame, A.L., Stroud, R.M. 1993. Mapping an membrane-associated conformation of colicin Ia. Biochemistry 32:9473–9479

    Google Scholar 

  26. Merrill, A.R., Cramer, W.A. 1990. Identification of a voltage responsive segment of the potential-gated colicin E1 ion channel. Biochemistry 29:8529–8534

    CAS  PubMed  Google Scholar 

  27. Miller, C. 1982. Bis-quaternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel. J. Gen. Physiol. 79:869–891

    Google Scholar 

  28. Montal, M. 1974. Formation of bimolecular membranes from lipid monolayers. Methods Enzymol. 32:545–554

    Google Scholar 

  29. Morlon, J., Lloubes, R., Varenne, S., Chartier, M., Lazdunski, C. 1983. Complete nucleotide sequence of the structural gene for colicin A, a gene translated at non-uniform rate. J. Mol. Biol. 170:271–285

    Google Scholar 

  30. Naranjo, D., Latorre, R., Cherbavaz, D., McGill, P., Schumaker, M.F. 1994. A simple model for surface charge on ion channel proteins. Biophys. J. 66:59–70

    Google Scholar 

  31. Nikaido, H. 1994. Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem. 269:3905–3908.

    Google Scholar 

  32. Pattus, F. 1990. Membrane protein structure. Curr. Opin. Cell Biol. 2:681–685

    Google Scholar 

  33. Pattus, F., Cavard, D., Verger, R., Lazdunski, C., Rosenbusch, J., Schindler, H. 1983. Formation of voltage dependent pores in planar bilayers by colicin A. In: Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 407–413. Elsevier, Amsterdam

    Google Scholar 

  34. Raymond, L., Slatin, S., Finkelstein, A. 1985. Channels formed by colicin E1 in planar lipid bilayer are large and exhibit pH-dependent ion selectivity. J. Membrane Biol. 84:173–181

    Google Scholar 

  35. Raymond, L., Slatin, S., Finkelstein, A., Liu, Q.-R., Levinthal, C. 1986. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of region outside the channel-forming region. J. Membrane Biol. 92:255–268

    Google Scholar 

  36. Schein, S.J., Kagan, B.L., Finkelstein, A. 1978. Colicin A acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163

    Google Scholar 

  37. Schramm, E., Mende, J., Braun, V., Kamp, R.M. 1987. Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent colicins and receptors. J. Bacteriol. 169:3350–3357

    Google Scholar 

  38. Shirabe, K., Cohen, F.S., Xu, S., Peterson, A.A., Shiver, J.W., Nakazawa, A., Cramer, W.A. 1989. Decrease of anion selectivity caused by mutation of thr501 and gly502 to glu in the hydrophobic domain of the colicin E1 channel. J. Biol. Chem. 264:1951–1957

    Google Scholar 

  39. Shiver, J.W., Cohen, F.S., Merrill, A.R., Cramer, W.A. 1988. Site-directed mutagenesis of the charged residues near the carboxyl terminus of the colicin E1 ion channel. Biochemistry 27:8421–8428

    Google Scholar 

  40. Shiver, J.W., Cramer, W.A., Cohen, F.S., Bishop, L.J., deJong, P.J. 1987. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. J. Biol. Chem. 262:14273–14281

    Google Scholar 

  41. Slatin, S.L., Raymond, L., Finkelstein, A. 1986. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: the role of protein translocation. J. Membrane Biol. 92:247–254

    Google Scholar 

  42. Song, H.Y., Cohen, F.S., Cramer, W.A. 1991. Membrane topology of ColE1 gene products: the hydrophobic anchor of the colicin E1 channel is a helical hairpin. J. Bacteriol. 173:2927–2934

    Google Scholar 

  43. Varley, J.M., Boulnois, G.J. 1984. Analysis of a colicin Ib gene: Complete nucleotide sequence and implications for regulation of expression. Nucleic Acids Res. 12:6727–6739

    Google Scholar 

  44. Weaver, C.A., Kagan, B.L., Finkelstein, A., Konisky, J. 1981. Mode of action of colicin Ib. Formation of ion-permeable membrane channels. Biochim. Biophys. Acta 645:137–142

    Google Scholar 

  45. Wilmsen, H.U., Pugsley, A.P., Pattus, F. 1990. Colicin N forms voltage- and pH-dependent channels in planar lipid bilayer membranes. Eur. Biophys. J. 18:149–158

    Google Scholar 

  46. Wormald, M.R., Merrill, A.R., Cramer, W.A., Williams, R.J.P. 1990. Solution NMR studies of the colicin E1 C-terminal thermolytic peptide. Eur. J. Biochem. 191:155–161

    Google Scholar 

  47. Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T., Nakazawa, A. 1982. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc. Natl. Acad. Sci. USA 79:2827–2831

    Google Scholar 

  48. Zhang, Y.-L., Cramer, W.A. 1992. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Protein Science 1:1666–1676

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Dr. F.S. Cohen for making available unpublished data and for helpful comments. This work was supported by National Institutes of Health grant GM 37396 and by the Howard Hughes Medical Institute Undergraduate Biological Sciences Education Initiative (E.R.K.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, J.O., Kolen, E.R. Ion selectivity of colicin E1: III. Anion permeability. J. Membarin Biol. 144, 131–145 (1995). https://doi.org/10.1007/BF00232799

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232799

Key words

Navigation