Skip to main content
Log in

The use of viable hepatocytes to study the hormonal control of glycogenolysis in the chicken

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The rapid isolation of high yields of parenchymal cells from chicken liver is described. Stringent tests of viability show that the isolated hepatocytes are both structurally and metabolically similar to those in intact liver. During incubation viability decreased and the significance of this change on the interpretation of metabolic experiments is discussed. Lactate was a much more effective gluconeogenic precursor than pyruvate even in the presence of additional reducing equivalents. Hepatocytes isolated from fed chickens produced glucose from glycogen degradation. Glycogenolysis was stimulated by glucagon, dibutyryl cyclic AMP and adrenaline. Half maximal glucagon effects were elicited by physiological concentrations of the hormone. Glucagon and dibutyryl cyclic AMP stimulated glucagon, dibutyryl cyclic AMP and adrenaline their action was not additive to that of adrenaline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hazelwood, R. L. and Lorenz, F. W., 1959. Amer. J. Physiol. 197, 47–51.

    Google Scholar 

  2. Langslow, D. R., Butler, E. J., Hales, C. N. and Pearson, A. W., 1970. J. Endocrin. 46, 243–260.

    Google Scholar 

  3. Ureta, T., Reichberg, S. B., Radojkovic, J. and Slebe, J. C., 1973. Comp. Biochem. Physiol. 45B, 445–461.

    Google Scholar 

  4. O'Neill, I. E. and Langslow, D. R., 1976. Biochem. Soc. Trans. 4, 267–270.

    Google Scholar 

  5. Hazelwood, R. L., 1976. In ‘Avian Biology’ (D. S. Farner and J. R. King, eds.) pp. 471–526, Academic Press, New York.

  6. Langslow, D. R. and Hales, C. N. 1971. In ‘Physiology and Biochemistry of the Domestic Fowl” (D. J. Bell and B. M. Freeman, eds.) pp. 521–547, Academic Press, New York.

  7. Utter, M. F., 1959. Ann. N.Y. Acad. Sci. 72, 451–461.

    Google Scholar 

  8. Heald, P. J., McLachlan, P. M. and Rookledge, K. A. 1965. J. Endocrin. 33, 83–95.

    Google Scholar 

  9. Bondareva, V. M., 1970. Dokl. Akad. Nauk SSSR, Otd Biokh. 19, 247–249.

    Google Scholar 

  10. Hazelwood, R. L., Kimmel, J. R. and Pollock, H. G., 1968. Endocrinology 83, 1331–1336.

    Google Scholar 

  11. Howard, R. B. and Pesch, L. A., 1968. J. Biol. Chem. 243, 3105–3109.

    Google Scholar 

  12. Berry, M. N. and Friend, D. S., 1969. J. Cell. Biol. 43, 506–520.

    Google Scholar 

  13. Goodridge, A. G., 1973. J. Biol. Chem. 248, 1924–1931.

    Google Scholar 

  14. Badenoch-Jones, P. and Buttery, P. J., 1975. Int. J. Biochem. 6, 387–392.

    Google Scholar 

  15. Capuzzi, D. M., Rothman, V. and Margolis, S., 1974. J. Biol. Chem. 249, 1286–1294.

    Google Scholar 

  16. Hoskins, J. N., Meynell, G. G. and Sanders, F. K., 1956. Exp. Cell. Res. 11, 297–305.

    Google Scholar 

  17. Bihler, I. and Jeanrenaud, B., 1970. Biochim. Biophys. Acta 202, 496–506.

    Google Scholar 

  18. Adam, H., 1963. In “Methods of Enzymatic Analysis’ (H. U. Bergmeyer, ed.) pp. 573–577, Academic Press, New York and London.

  19. Bergmeyer, H. U., 1975. In ‘Methods in Enzymatic Analysis’. Academic Press, New York and London.

    Google Scholar 

  20. Trinder, P., 1969. J. Clin. Path. 22, 246–249.

    Google Scholar 

  21. Walaas, O. and Walaas, E., 1950. J. Biol. Chem. 187, 769–776.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  23. Burton, K., 1956. Biochem. J. 62, 315–323.

    Google Scholar 

  24. Zimmerman, M., Devlin, T. M. and Pruss, M. P., 1960. Nature 185, 315–316.

    Google Scholar 

  25. Krebs, H. A., Cornell, N. W., Lund, P. and Hems, R., 1974. In ‘Alfred Benzon Symposium Vl,’ pp. 718–743, Munksgaard, Copenhagen.

  26. Quistorff, B., Bondesen, S. and Grunnett, N., 1973. Biochim. Biophys. Acta 320, 503–516.

    Google Scholar 

  27. Locke, E., Buttery, P. J. and Boorman, K. N., 1972. Biochem. J. 129, 20P.

  28. Söling, H. D., Kleineke, J., Willms, B., Janson, G. and Kuhn, A., 1973. Eur. J. Biochem. 37, 233–243.

    Google Scholar 

  29. Bannister, D. W., Evans, A. J. and Whitehead, C. C., 1975. Res. Vet. Sci. 18, 149–156.

    Google Scholar 

  30. Davison, T. F. and Langslow, D. R., 1975. Comp. Biochem. Physiol. 52A, 645–649.

    Google Scholar 

  31. Johnson, M. E. M., Das, N. M., Butcher, F. R. and Fain, J. N., 1972. J. Biol. Chem. 247, 3229–3235.

    Google Scholar 

  32. Cornell, N. W., Lund, P. and Krebs, H. A. 1974. Biochem. J. 142, 327–337.

    Google Scholar 

  33. Mapes, J. R. and Harris, R. A., 1975. FEBS Lett. 51, 80–83.

    Google Scholar 

  34. Krebs, H. A., Dierks, C. and Gascoyne, T., 1964. Biochem. J. 93, 112–121.

    Google Scholar 

  35. Wagle, S. R. and Ingebretson, W. R., 1974. Proc. soc. Exp. Biol. Med. 147, 578–584.

    Google Scholar 

  36. Bickerstaffe, R., West, C. E. and Annison, E. F., 1970. Biochem. J. 118, 427–431.

    Google Scholar 

  37. Garrison, J. C. and Haynes, R. C., 1973. J. Biol. Chem. 248, 5333–5343.

    Google Scholar 

  38. Hue, L., Bontemps, F. and Hers, H.-G., 1975. Biochem. J. 152, 105–114.

    Google Scholar 

  39. Kono, T. and Barham, F. W., 1971. J. Biol. Chem. 246, 6204–6209.

    Google Scholar 

  40. Park, C. R. and Exton, J. H., 1972. In ‘Glucagon; Molecular Physiology Clinical and Therapeutic Implications’ (P. Lefebvre and R. H. Unger, eds.) pp. 77–108, Pergamon Press, New York and Oxford.

  41. Wagle, S. R., 1975. Biochem. Biophys. Res. Commun. 67, 1019–1027.

    Google Scholar 

  42. Barnabei, O., Poli, A. Ferretti, E., Migani, P. and Tomasi, V., 1976. In ‘Use of Isolated Liver Cells and Kidney Tubules for Metabolic Studies’ (J. M. Tager, H.-D. Söling and J. R. Williamson, eds.) pp. 422–425, North Holland Publishing Co. Amsterdam and Oxford.

  43. Anderson, C. E. and Langslow, D. R., 1975. Biochem. Soc. Trans. 3, 1037–1039.

    Google Scholar 

  44. Tolbert, M. E. M. and Fain, J. N., 1974. J. Biol. Chem. 249,1162–1166.

    Google Scholar 

  45. Anderson, C. E., Dickson, A. J. and Langslow, D. R., 1976. In ‘Use of Isolated Liver Cells and Kidney Tubules for Metabolic Studies’ (J. M. Tager, H.-D. Söling and J. R. Williamson, eds.) pp. 402–403, North Holland Publishing Co. Amsterdam and Oxford.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, A.J., Anderson, C.E. & Langslow, D.R. The use of viable hepatocytes to study the hormonal control of glycogenolysis in the chicken. Mol Cell Biochem 19, 81–92 (1978). https://doi.org/10.1007/BF00232598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232598

Keywords

Navigation