Skip to main content
Log in

Osmotic flow in membrane pores of molecular size

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Water transfer by osmosis through pores occurs either by viscous flow or diffusion depending on whether the driving osmolyte is able to enter the pore. Analysis of osmotic permeabilities (P os )measured in antibiotic and cellular pore systems supports this distinction, showing that P os approaches either the viscous value (P f ) or the diffusive value (P d )depending on the size of the osmolyte in relation to the pore radius. Macroscopic hydrodynamics and diffusion theory, when used with drag and steric coefficients within an appropriate osmotic model, apply with remarkable accuracy to channels of molecular dimensions where water molecules cannot pass each other, without the need to postulate any special flow regimes.

It becomes apparent that the true viscous to diffusive flow ratio, P f /P d , can be separated from the effects of tracer filing by osmotic measurements alone. It does not monotonically decrease with the pore radius but rises steeply at the smaller radii which would apply to pores in cell membranes. Consequently, the application of the theory to osmotic and diffusive flow data for the red cell predicts a pore radius of 0.2 nm in agreement with other recent measurements on isolated components of the system, showing that the viscous-diffusive distinction applies even in molecular pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agre, P., Preston, G.M. 1991. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc. Natl. Acad. Sci. USA 88:11110–11114

    Google Scholar 

  2. Andreoli, T.E., Dennis, V.W., Weigl, A.M. 1969. The effect of Amphotericin B on the water and non-electrolyte permeability of thin lipid membranes. J. Gen. Physiol. 53:133–156.

    Google Scholar 

  3. Beck, R.E., Schultz, J.S. 1972. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry. Biochim. Biophys. Acta 255:273–303

    Google Scholar 

  4. Castillo, L.F., Mason, E.A. 1980. Statistical-mechanical theory of passive transport through partially sieving or leaky membranes. Biophys. Chem. 12:223–233

    Google Scholar 

  5. Cohen, B.E. 1975. The permeability of liposomes to non-electrolytes: I. Activation energies for permeation. J. Membrane Biol. 20:205–234

    Google Scholar 

  6. Dainty, J., Ginzburg, B.Z. 1963. Irreversible thermodynamics and frictional models of membrane processes. J. Theor. Biol. 5:256–265

    Google Scholar 

  7. Dani, J.A., Levitt, D.G. 1981. Binding constants for Li, K, and T1, in the gramicidin channel determined from water permeability measurements. Biophys. J. 35:485–500

    Google Scholar 

  8. Durbin, R.P. 1960. Osmotic flow of water across permeable cellulose membranes. J. Gen. Physiol. 44:315–326

    Google Scholar 

  9. Durbin, R.P., Frank, H., Solomon, A.K. 1956. Water flow through frog gastric mucosa. J. Gen. Physiol. 39:535–551

    Google Scholar 

  10. Faxen, H. 1922. Die Bewegung einer starren kugel längs der Achse eines mit zäher Flussigkeit gefullten Rohres. Archiv for Matematik, Astronomi och Fysik. Band 17 27:1–28

    Google Scholar 

  11. Faxen, H. 1922. Der Widerstand gegen die Bewegung einer starren Kugel in einer zahen Flussigkeit, die zwischen zwei parallelen ebenen Wanden eingeschlossen ist. Annalen der Physik 68:89–119

    Google Scholar 

  12. Ferry, J.D. 1936. Statistical evaluation of sieve constants in ultrafiltration. J. Gen. Physiol. 20:95–104

    Google Scholar 

  13. Finkelstein, A. 1974. Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B and gramicidin A: Implications for pores in plasma membranes. In: Drugs and Transport Processes. B.A. Callingham, editor, pp. 241–250. MacMillan, London

    Google Scholar 

  14. Finkelstein, A. 1987. Water Movement through Lipid Bilayers, Pores and Plasma Membranes. John Wiley, New York

    Google Scholar 

  15. Fischbarg, J., Kuang, K., Li, J., Arant-Hickman, S., Vera, J., Loike, J. 1993. Facilitative and sodium-dependent glucose transporters behave as water channels. In: Isotonic Transport in Leaky Epithelia. H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen, editors, pp. 432–446. Munksgaard, Copenhagen

    Google Scholar 

  16. Galey, W.R., Brahm, J. 1985. The failure of hydrodynamic analysis to define pore size in cell membranes. Biochim. Biophys. Acta 818:425–428

    Google Scholar 

  17. Ginzburg, B.Z., Katchalsky, A. 1963. The frictional coefficients of the flows of nonelectrolytes through artificial membranes. J. Gen. Physiol. 47:403–418

    Google Scholar 

  18. Haberman, W.L., Sayre, R.M. (1958). Motions of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin. US Dept. Navy Report No. 1143

  19. Hill, A.E. 1982. Osmosis: a bimodal theory with implications for symmetry. Proc. Roy. Soc. Lond. B. 215:155–174

    Google Scholar 

  20. Hill, A.E. 1989. Osmosis in leaky pores: the role of pressure. Proc. R. Soc. Lond. B. 237:363–367

    Google Scholar 

  21. Hill, A.E. 1989. Osmotic flow equations for leaky porous membranes. Proc. Roy. Soc. Lond. B. 237:369–377

    Google Scholar 

  22. Hodgkin, A.L., Keynes, R.D. 1955. Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. 128:28–60

    Google Scholar 

  23. Holz, R., Finkelstein, A. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics Nystatin and Amphotericin B. J. Gen. Physiol. 56:125–145

    Google Scholar 

  24. Kedem, O., Katchalsky, A. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45:143–179

    Google Scholar 

  25. Levitt, D.G. 1973. Kinetics of diffusion and convection in 3.2 A pores. Biophys. J. 13:186–206

    Google Scholar 

  26. Levitt, D.G., Elias, S.R., Hautman, J.M. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, onactin or valinomycin. Biochim. Biophys. Acta 512:436–451

    Google Scholar 

  27. Longuet-Higgins, H.C., Austin, G. 1966. The kinetic of osmotic transport through pores of molecular dimensions. Biophys. J. 6:217–224

    Google Scholar 

  28. Mauro, A. 1957. Nature of solvent transfer in osmosis. Science 126:252–253

    Google Scholar 

  29. Moura, T.F., Macey, R.I., Chien, D.Y., Karan, D., Santos, H. 1984. Thermodynamics of all-or-none water channel closure in red cells. J. Membrane Biol. 81:105–111

    Google Scholar 

  30. Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    CAS  PubMed  Google Scholar 

  31. Renkin, E.M. 1954. Filtration, diffusion and molecular sieving through porous cellular membranes. J. Gen. Physiol. 38:225–243

    Google Scholar 

  32. Renkin, E.M., Curry, F.E. 1979. Chapter 1. Transport of water and solutes across capillary endothelium. In: Membrane Transport in Biology, Vol IVA. G. Giebisch, D.C. Tosteson, H.H. Ussing, editors, pp. 1–45. Springer, New York

    Google Scholar 

  33. Rosenberg, P.A., Finkelstein, A. 1978. Water permeability of gramicidin A-treated lipid bilayer membranes. J. Gen. Physiol. 72:341–350

    Google Scholar 

  34. Solomon, A.K. 1968. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51:335s-364s

    Google Scholar 

  35. van Hoek, A.N., Verkman, A.S. 1992. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267:18267–18269

    Google Scholar 

  36. Vegard, L. 1908. On the free pressure in osmosis. Proc. Camb. Phil. Soc. 15:13–23

    Google Scholar 

  37. Verkman, A.S. 1992. Water channels in cell membranes. Annu. Rev. Physiol. 54:97–108

    Google Scholar 

  38. Wang, H., Skalak, R. 1969. Viscous flow in a cylindrical tube containing a line of spherical particles. J. Fluid Mech. 38:75–96

    Google Scholar 

  39. Whittembury, G., Carpi-Medina, P. 1988. Renal absorption of water: are there pores in proximal tubule cells? NIPS 3:61–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I should like to thank Drs. B. and Y.Y. Shachar-Hill for many helpful discussions on this problem and for their time and effort expended in critically reading the manuscript at numerous stages. This paper originated as an invited talk given to the annual meeting on Membrane Transport at Sandbjerg, Denmark in June 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, A.E. Osmotic flow in membrane pores of molecular size. J. Membarin Biol. 137, 197–203 (1994). https://doi.org/10.1007/BF00232588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232588

Key words

Navigation