Skip to main content
Log in

Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15–60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaMV:

cauliflower mosaic virus

NPT-II:

neomycin phosphotransferase

PAT:

phosphinothricin acetyltransferase

PPT:

phosphinothricin

References

  • Asano, S., Mizutani, M., Hayashi, T., Morita, N., and Takeguchi, N. (1990) J. Biol. Chem., 265, 22167–22173

    Google Scholar 

  • Costantino, P., Spano, L., Pomponi, M., Benvenuto, E., and Ancora, G. (1984) J. Mol. Appl. Genet., 2, 465–470

    Google Scholar 

  • De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Rao Movva, N., Thompson, C, Van Montagu, M., and Leemans, J. (1987) EMBO J., 6, 2513–2518

    Google Scholar 

  • De Block, M., De Brouwer, D., and Tenning, P. (1989) Plant Physiol., 91, 694–701

    Google Scholar 

  • Dellaporta, S. L., Wood, J., and Hicks, J. B. (1983) Plant Mol. Biol. Reporter, 1, 19–21

    Google Scholar 

  • De Paolis, A., Mauro, M. L., Pomponi, M., Cardarelli, M., Spano, L., and Costantino, P. (1985) Plasmid, 13, 1–7

    PubMed  Google Scholar 

  • Gamborg, O. L., Miller, R. A., and Ojima, K. (1968) Exp. Cell Res., 50, 151–158

    Google Scholar 

  • Hamil, J. D., Prescott, A., and Martin, C. (1987) Plant Mol. Biol., 9 573–584

    Google Scholar 

  • Hayashi, T., Kishi, M., Kawasaki, M., Arisawa, M., Shimizu, M., Suzuki, S., Yoshizaki, M., Morita, N., Tezuka, Y., Kikuchi, T., Berganza, L.H., Ferro, E., and Basualdo, I. (1987) Tetrahedron Lett., 28, 3693–3696

    Google Scholar 

  • Hayashi, K., Niwayama, S., Hayashi, T., Nago, R., Ochiai, H., and Morita, N. (1988) Antiviral Res., 9, 345–354

    Google Scholar 

  • Hayashi, T., Okamura, K., Kawasaki, M., and Morita, N. (1991) Phytochem., 30, 3617–3620

    Google Scholar 

  • Hayashi, K., Hayashi, T., and Morita, N. (1992) Phytother. Res., 6, 6–9

    Google Scholar 

  • Jouanin, L. (1984) Plasmid, 12, 91–102

    CAS  PubMed  Google Scholar 

  • Jung, G., and Tepfer, D. (1987) Plant Science, 50, 145–151

    Google Scholar 

  • Kawasaki, M., Hayashi, T., Arisawa, M., Shimizu, M., Hiroe, S., Ueno H., Syogawa, H., Suzuki, S., Yoshizaki, M., Morita, N., Tezuka, Y., Kikuchi, T., Berganza, LH., Ferro, E., and Basualdo, I. (1987) Chem. Pharm. Bull., 35, 3963–3966

    Google Scholar 

  • Ko, K. S., Ebizuka, Y., Noguchi, H., Sankawa, U. (1988) Chem. Pharm. Bull., 36, 4217–4220

    Google Scholar 

  • Lloyd, A. M., Walbot, V., and Davis, R. W. (1992) Science, 258, 1773–1775

    Google Scholar 

  • Murashige, T., and Skoog, F. (1962) Physiol. Plant, 15, 473–479

    Google Scholar 

  • Reiss, B., Sprengel, R., Will, H., and Schaller, H. (1984) Gene, 30, 211–218

    Google Scholar 

  • Saito, K., Kaneko, H., Yamazaki, M., Yoshida, M., and Murakoshi, I. (1990a) Plant Cell Rep., 8, 718–721

    Google Scholar 

  • Saito, K., Yamazaki, M., Shimomura, K., Yoshimatsu, K., and Murakoshi, I. (1990b) Plant Cell Rep., 9, 121–124

    Google Scholar 

  • Saito, K., Yamazaki, M., Kaneko, H., Murakoshi, I., Fukuda, Y., and Van Montagu, M. (1991a) Planta, 184, 40–46

    Google Scholar 

  • Saito, K., Noji, M., Ohmori, S., Imai, Y., and Murakoshi, I. (1991b) Proc. Natl. Acad. Sci. USA, 88, 7041–7045

    Google Scholar 

  • Saito, K., Yamazaki, M., Kawaguchi, A., and Murakoshi, I. (1991c) Tetrahedron., 47, 5955–5968

    Google Scholar 

  • Saito, K., Yamazaki, M., and Murakoshi, I. (1992a) J. Nat. Prod., 55, 149–161

    Google Scholar 

  • Saito, K., Yamazaki, M., Anzai, H., Yoneyama, K., and Murakoshi, I. (1992b) Plant Cell Rep., 11, 219–224

    Google Scholar 

  • Shahin, E. A., Sukhapinda, K., Simpson, R. B., and Spivey, R. (1986) Theor. Appl. Genet., 72, 770–777

    Google Scholar 

  • Simpson, R. B., Spielmann, A., Margossian, L., and McKnight, T. D. (1986) Plant Mol. Biol., 6, 403–415

    Google Scholar 

  • Slightom, J. L., Durand-Tardif, M., Jouanin, L., and Tepfer, D. (1986) J. Biol. Chem., 261, 108–121

    Google Scholar 

  • Spencer, T. M., Gordon-Kamm, W. J., Daines, R. J., Start, W. G., and Lemaux, P. G. (1990) Theor. Appl. Genet., 79, 625–631

    Google Scholar 

  • Stougaard, J., Abildsten, D., and Marcker, K. A. (1987) Mol. Gen. Genet., 207, 251–255

    Google Scholar 

  • Sukhapinda, K., Spivey, R., Simpson, R. B., and Shahin, E. A. (1987) Mol. Gen. Genet., 206, 491–497

    Google Scholar 

  • Tepfer, D. (1984) Cell, 37, 959–967

    Article  CAS  PubMed  Google Scholar 

  • Tepfer, D., Metzger, L., and Prost, R. (1989) Plant Mol. Biol., 13, 295–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Shimamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, M., Son, L., Hayashi, T. et al. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Reports 15, 317–321 (1996). https://doi.org/10.1007/BF00232363

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232363

Keywords

Navigation