Skip to main content
Log in

Differential effects of trypsin on the epidermis of Rana catesbeiana

Observations on differentiating junctions and cytoskeletons

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The filamentous cytoskeletons of epidermal cells of the bullfrog (Rana catesbeiana) were investigated by electron microscopy. Following treatment with trypsin, sheets of epithelium were removed from swatches of abdominal skin. Trypsinization produces differential effects on the ultrastructure of the various cell layers. The desmosomes of all layers, except those of the stratum corneum, are split by trypsinization and the resulting desmosomal plaques fastened to tonofilaments are retracted into cells to form deep “inpouchings” of the plasma membranes, while tonofilament bundles become diffuse. Epidermal sheets were gently homogenized to form a suspension of cell remnants with damaged plasma membranes as indicated by vital dye exclusion tests and electron microscopy. Cytoskeletons retain their shapes, yet the lateral distances between individual tonofilaments within bundles appear to increase, thus forming diffuse lacelike structures. These observations support the suggestion that tonofilament bundles, when fastened to desmosomes, have elastic properties. The possible role of the cytoskeletons in the maintenance of cell size and shape in an ion-transporting epithelium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brody, I.: The ultrastructure of the tonofibrils in the keratinization process of normal human epidermis. J. Ultrastruct. Res. 4, 264–297 (1960)

    Google Scholar 

  • Campbell, R.D., Campbell, J.H.: Origin and continuity of desmosomes. In: Origin and continuity of cell organelles. (J. Reinert and H. Ursprung, eds.). New York: Springer-Verlag 1971

    Google Scholar 

  • Carasso, N., Favard, P., Jard, S., Rajerison, R.M.: The isolated frog epithelium. I. Preparation and general structure in different physiological states. J. Microsc. 10, 315–330 (1971)

    Google Scholar 

  • Cerejido, M., Rotunno, C.A.: Fluxes and distribution of sodium in frog skin: a new model. J. Gen. Physiol. 51, 280–289 (1968)

    Google Scholar 

  • Charles, A., Smiddy, F.G.: The tonofibrils of the human epidermis. J. Invest. Dermatol. 29, 327–338 (1957)

    Google Scholar 

  • Eggena, P.: Action of vasopressin, ouabain, and cyanide on the volume of isolated toad bladder epithelial cells. J. Membr. Biol. 35, 29–37 (1977)

    Google Scholar 

  • Farquhar, M.G., Palade, G.E.: Functional organization of amphibian skin. Proc. Nat. Acad. Sci. 51, 569–577 (1964)

    Google Scholar 

  • Farquhar, M.G., Palade, G.E.: Cell junctions in amphibian skin. J. Cell Biol. 26, 263–291 (1965)

    Google Scholar 

  • Farquhar, M.G., Palade, G.E.: Adenosine triphosphate localization in amphibian epidermis. J. Cell Biol. 30, 359–379 (1966)

    Google Scholar 

  • Gray, G.M., Yardley, H.J.: Mitochondria and nuclei of pig and human epidermis: isolation and lipid composition. J. Invest. Dermatol. 64, 422–430 (1975)

    Google Scholar 

  • Gray, G.M., Yardley, H.J.: Brittle fracture of epidermal cells by liquid-shear. J. Cell Sci. 20, 699–705 (1976)

    Google Scholar 

  • Kaltenbach, J.P., Kaltenbach, M.H., Lyons, W.B.: Nigrosin as a dye for differentiating live and dead ascites cells. Exp. Cell Res. 15, 112–117 (1958)

    Google Scholar 

  • Kelly, D.E.: Fine structure of desmosomes, hemidesmosomes and an adepidermal globular layer in developing newt epidermis. J. Cell Biol. 28, 51–72 (1966)

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H.: The nature of the frog skin potential. Acta Physiol. Scand. 42, 298–308 (1958)

    Google Scholar 

  • Kunitz, M.: Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol. 30, 291–310 (1947a)

    Google Scholar 

  • Kunitz, M.: Isolation of a crystalline protein compound of trypsin and of soybean trypsin-inhibitor. J. Gen. Physiol. 30, 311–320 (1947b)

    Google Scholar 

  • Listgarten, M.A.: The ultrastructure of human gingival epithelium. Amer. J. Anat. 114, 49–69 (1964)

    Google Scholar 

  • Manger, R.L., Pratley, J.N.: Some properties of frog skin epithelial tonofilaments. J. Cell Biol. 75, No. 2, Pt. 2, 363a (1977)

  • McNutt, N.S., Weinstein, R.S.: Membrane ultrastructure at mammalian intercellular junctions. Prog. Biophys. Mol. Biol. 26, 45–101 (1973)

    Google Scholar 

  • Odland, G.F.: Tonofilaments and keratohyalin. In: The epidermis (W. Montagna and W.C. Lobitz, eds.) New York: Academic Press 1964

    Google Scholar 

  • Overton, J.: Desmosome development in normal and reassociated cells in early chick blastoderm. Dev. Biol. 4, 532–548 (1962)

    Google Scholar 

  • Overton, J.: The fate of desmosomes in trypsinized tissue. J. Exp. Zool. 168, 203–214 (1968)

    Google Scholar 

  • Parakkal, P.F., Alexander, N.J.: Keratinization: A survey of vertebrate epithelia. New York: Academic Press 1972

    Google Scholar 

  • Parakkal, P.F., Matoltsy, A.G.: A study of the fine structure of the epidermis of Rana pipiens. J. Cell Biol. 20, 85–94 (1964)

    Google Scholar 

  • Pratley, J.N., McQuillen, N.K.: The role of microfilaments in frog skin ion transport. J. Cell Biol. 56, 850–857 (1973)

    Google Scholar 

  • Skerrow, C.J., Matoltsy, A.G.: Isolation of epidermal desmosomes. J. Cell Biol. 63, 515–523 (1974)

    Google Scholar 

  • Spearman, R.I.: The integument: A textbook of skin biology. Cambridge: The University Press 1973

    Google Scholar 

  • Spring, K.R., Hope, A.: Size and shape of the lateral intercellular spaces in a living epithelium. Science 200, 54–58 (1978)

    Google Scholar 

  • Ussing, H.U., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23, 110–127 (1951)

    Google Scholar 

  • Voute, C.L.: An electron microscopic study of the skin of the frog (Rana pipiens). J. Ultrastruct. Res. 9, 497–510 (1963)

    Google Scholar 

  • Voute, C.L., Ussing, H.H.: The morphological aspects of a shunt path in the epithelium of the frog skin (Rana temporaria). Exp. Cell Res. 62, 375–383 (1970a)

    Google Scholar 

  • Voute, C.L., Ussing, H.H.: Quantitative relation between hydrostatic pressure gradient, extracellular volume and active sodium transport in the epithelium of the frog skin (Rana temporaria) Exp. Cell Res. 62, 375–383 (1970b)

    Google Scholar 

  • Wilgram, G., Caulfield, J.B., Madgic, E.B.: A possible role of the desmosome in the process of keratinization. In: The epidermis. (W. Montagna and W.C. Lobitz, eds.) London: Academic Press 1964

    Google Scholar 

  • Wilgram, G., Caulfield, J.B., Madgic, E.B.: An electron microscopic study of genetic errors in keratinization in man. In: Biology of skin and hair growth. (A. Lyne and B. Short, eds.). Sidney: Angus and Robertson 1965

    Google Scholar 

  • Yeltman, D.R.: Correlation of ultrastructure with bioelectric potentials in Rana pipiens epidermis. Master's thesis. California State University, San Jose (1971)

    Google Scholar 

  • Zylber, E.A., Rotunno, C.A., Cereijido, M.: Ion and water balance in isolated epithelial cells of the abdominal skin of the frog Leptodoctylus ocellatus. J. Membr. Biol. 13, 199–216 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported, in part, by United States Public Health Service Training Grant AH 01037-01

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morejohn, L.C., Pratley, J.N. Differential effects of trypsin on the epidermis of Rana catesbeiana . Cell Tissue Res. 198, 349–362 (1979). https://doi.org/10.1007/BF00232016

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232016

Key words

Navigation