Skip to main content
Log in

Ultrastructure of the epidermal gland system of Tetranchyroderma suecicum Boaden, 1960 (Gastrotricha: Macrodasyida) indicates a defensive function of its exudate

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Although the phylum Gastrotricha is known and studied for more than 150 years, some cell types, tissues and organ systems are still not well understood in terms of their morphology, ultrastructure, function and role. One of these features is the epidermal gland system (EGS). As yet, there is just a single detailed electron microscopic investigation of the epidermal glands of the species Turbanella cornuta Remane, 1925, plus scattered ultrastructural data of few additional species. We comprehensively investigated the epidermal glands of Tetranchyroderma suecicum Boaden, 1960 by means of serial sectioning and transmission electron microscopy (TEM) and with scanning electron microscopy. Furthermore, light microscopical, confocal laser scanning microscopical and micro-computed tomographical (µCT) techniques were additionally used for this investigation. Computer programs for 3D-reconstructions were used to analyse the data obtained by TEM and µCT. Tetranchyroderma suecicum possesses up to 100, mostly pairwise arranged, glandulocytes. Each single-celled gland contains a large anastomosing secretory cistern with granular content, has a very electron-dense cytoplasm, a basally positioned nucleus, peripherally arranged mitochondria and a cuticulated, ‘chimney-like’ apical neck, which carries the cellular pore. Each merocrine glandulocyte is associated with an adjacent ciliated sensory cell. There is currently no coherent hypothesis of the glandulocytes’ functional role, but different ideas are discussed. We refer to evidence that the secretory product of the EGS of Tetranchyroderma suecicum most likely acts as a repellent against potential predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angermüller S, Fahimi HD (1982) Imidazole-buffered osmium tetroxide: an excellent stain for visualization of lipids in transmission electron microscopy. Histochem J 14:823–835

    PubMed  Google Scholar 

  • Balsamo M, Grilli P, Guidi L, d’Hondt J-L (2014) Gastrotricha: biology, ecology and systematics: families Dasydytidae, Dichaeturidae, Neogosseidae, Proichthydiidae. Identification Guides to the Plankton and Benthos of Inland Waters, vol 24. Backuys Publishers, Margraf Publishers, Weikersheim

  • Belazi D, Solé-Domènech S, Johansson B, Schalling M, Sjövall P (2009) Chemical analysis of osmium tetroxide staining in adipose tissue using imaging ToF-SIMS. Histochem Cell Biol 132:105–115

    CAS  PubMed  Google Scholar 

  • Boaden PJS (1960) Three new Gastrotrichs from the Swedish west coast. Cahr Biol Mar 1:397–406

    Google Scholar 

  • Cerca J, Purschke G, Struck HG (2018) Marine connectivity dynamics: clarifying cosmopolitan distributions of marine interstitial invertebrates and the meiofauna paradox. Mar Biol 165:123

    Google Scholar 

  • Chute CD, Srinivasan J (2014) Chemical mating cues in C. elegans. Semin Cell Dev Biol 33:18–24

    CAS  PubMed  Google Scholar 

  • Giere O (2009) Gastrotricha. In: Giere O (ed) Meiobenthology—the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, Berlin, pp 162–164

    Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    CAS  PubMed  Google Scholar 

  • Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8(18):3715–3724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Ann Rev Plant Physiol Plant Mol Biol 39:101–138

    CAS  Google Scholar 

  • Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, p 488

    Google Scholar 

  • Hochberg R (2010a) Two new species of Oregodasys (Gastrotricha: Macrodasyida: Thaumastodermatidae) from Carrie Bow Cay, Belize with ultrastructural observations of the epidermal glandular system. Zootaxa 2660:1–17

    Google Scholar 

  • Hochberg R (2010b) The epidermal glands of gastrotrichs: ultrastructural insights and hypotheses of function. Integr Comp Biol 50:e76

    Google Scholar 

  • Hochberg R, Atherton S (2011) A new species of Lepidodasys (Gastrotricha, Macrodasyida) from Panama with a description of its peptidergic nervous system using CLSM, anti-FMRFamide anti-SCPB. Zoologischer Anzeiger 250:111–122

    Google Scholar 

  • Holtmann M, Thurm U (2001) Mono-and oligo-vesicular synapses and their connectivity in a Cnidarian sensory epithelium (Coryne tubulosa). J Comp Neurol 432(4):537–549

    CAS  PubMed  Google Scholar 

  • Kieneke A, Nikoukar H (2017) Integrative morphological and molecular investigation of Turbanella hyalina Schultze, 1853 (gastrotricha: Macrodasyida), including a redescription of the species. Zoologischer Anzeiger 267:168–186

    Google Scholar 

  • Kieneke A, Schmidt-Rhaesa A (2015) Gastrotricha. In: Schmidt-Rhaesa A (ed) Handbook of zoology. Gastrotricha, Cycloneuralia and Gnathifera. Gastrotricha and Gnathifera, vol 3. De Gruyter, Berlin, p 134

    Google Scholar 

  • Kieneke A, Riemann O, Ahlrichs WH (2008) Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. Zool Scr 37:429–460

    Google Scholar 

  • Kieneke A, Schmidt-Rhaesa A, Hochberg R (2015) A new species of Cephalodasys (Gastrotricha, Macrodasyida) from the Caribbean Sea with a determination key to species of the genus. Zootaxa 3947:367–385

    PubMed  Google Scholar 

  • Kompauer M, Heiles S, Spengler B (2017) Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4 µm lateral resolution. Nat Methods 14:90–96. https://doi.org/10.1038/nmeth.4071

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Chang CY (2011) Two new species of the genus Lepidodasys (Gastrotricha, Lepidodasyidae) from Tsushima Island, Japan. J Nat Hist 45:855–867

    Google Scholar 

  • Lehninger AL (1985) Grundkurs Biochemie. Translated by Neubert, D. & Hucho, F. De Gruyter, Berlin, p 515

    Google Scholar 

  • Leighton DHW, Sternberg PW (2016) Mating pheromones of Nematoda: olfactory signaling with physiological consequences. Curr Opin Neurobiol 38:119–124

    CAS  PubMed  Google Scholar 

  • Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11. https://doi.org/10.1186/1472-6793-9-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulisch M, Welsch U (eds) (2010) Romeis Mikroskopische Technik. Spektrum Akademischer Verlag, Heidelberg, p 551

    Google Scholar 

  • Münter L, Kieneke A (2017) Novel myo-anatomical insights to the Xenotrichula intermedia species complex (Gastrotricha: Paucitubulatina): implications for a pan-European species and reconsideration of muscle homology among Paucitubulatina. Proc Biol Soc Wash 130:165–185

    Google Scholar 

  • Pfannkuche O, Thiel H (1988) Sample processing. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 134–145

    Google Scholar 

  • Rieder N, Schmidt K (1987) Morphologische Arbeitsmethoden in der Biologie. VCH Verlagsgesellschaft, Weinheim, p 223

    Google Scholar 

  • Rieger GE, Rieger RM (1977) Comparative fine structure study of the Gastrotrich cuticle ans aspects of cuticle evolution within the Aschelminthes. Zeitschrift für zoologische Systematik und Evolutionsforschung 15:81–124

    Google Scholar 

  • Rieger RM, Ruppert E, Rieger GE, Schoepfer-Sterrer C (1974) On the fine structure of gastrotrichs with description of Chordodasys antennatus sp n. Zool Scr 3:219–237

    Google Scholar 

  • Röhl I, Schneider B, Schmidt B, Zeeck E (1999) L-Ovothiol A: the egg release pheromone of the marine Polychaete Platynereis dumerilii: Annelida: Polychaeta. Z Naturforsch 54:1145–1147

    Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  • Ruppert EE (1991) Gastrotricha. In: Harrison FH, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. Wiley-Liss, New York, pp 41–109

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  • Schuster J, Atherton S, Todaro MA, Schmidt-Rhaesa A, Hochberg R (2018) Redescription of Xenodasys riedli (Gastrotricha: Macrodasyida) based on SEM analysis, with first report of population density data. Mar Biodivers 48:259–271

    Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9:1–33

    CAS  Google Scholar 

  • Storch V, Welsch U (2004) Kurzes Lehrbuch der Zoologie. Springer, Berlin, p 672

    Google Scholar 

  • Suzuki T, Fujikura K, Higashiyama T, Takata K (1997) DNA staining for fluorescence and laser confocal microscopy. J Histochem Cytochem 45(1):49–53

    CAS  PubMed  Google Scholar 

  • Teuchert G (1977) The ultrastructure of the marine Gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetical importance. Zoomorphologie 88:189–246

    Google Scholar 

  • Todaro MA (2002) An interesting new gastrotrich from littoral meiobenthos (Long Beach Island, USA), with a key to species of Tetranchyroderma (Gastrotricha: Macrodasyida). J Mar Biol Ass UK 82:555–563

    Google Scholar 

  • Todaro MA, Hummon WD (2008) An overview and a dichotomous key to genera of the phylum Gastrotricha. Meiofauna Marina 16:3–20

    Google Scholar 

  • Todaro MA, Sibaja-Cordero JA, Segura-Bermúdez OA, Coto-Delgado G, Goebel-Otárola N, Barquero JD, Cullell-Delgado M, Dal Zotto M (2019) An introduction to the study of Gastrotricha, with a taxonomic key to families and genera of the group. Diversity 2019(11):117

    Google Scholar 

  • Tomaschko K-H (1994) Ecdysteroids from Pycnogonum litorale (Arthropoda, Pantopoda) act as a chemical defense against Carcinus maenas (Crustacea, Decapoda). J Chem Ecol 20(7):1445–1455

    CAS  PubMed  Google Scholar 

  • Tyler S, Rieger GE (1980) Adhesive organs of the Gastrotricha I. Duo-gland organs. Zoomorphologie 95:1–15

    Google Scholar 

  • Tyler S, Melanson LA, Rieger RM (1980) Adhesive organs of the Gastrotricha II. The Organs of Neodasys. Zoomorphologie 95:17–26

    Google Scholar 

  • Ude J, Koch M (2002) Die Zelle: Atlas der Ultrastruktur. Spektrum Akademischer Verlag, Heidelberg, pp 1–328

    Google Scholar 

  • Westfall JA, Elliott CF, Carlin RW (2002) Ultrastructural evidence for two-cell and three-cell neural pathways in the tentacle epidermis of the sea anemone Aiptasia pallida. J Morphol 251:83–92

    PubMed  Google Scholar 

  • Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76(9):4498–4502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    PubMed  Google Scholar 

Download references

Acknowledgements

Sincere thanks are given to Björn M. von Reumont and to Alexander Blanke for preparing and hosting the workshop “From synchrotron based micro-CT scans to 3D models and beyond” (May 2017). Many thanks also to Jannis Ortgies, who patiently prepared many of the TEM slices used for the current study. Furthermore, we acknowledge the Forschen@Studium Grant of the Carl von Ossietzky University Oldenburg (program Forschungsbasiertes Lernen im Fokus plus, FliF +), which allowed us to present the results of this study at the 17th International Meiofauna Conference in Évora, Portugal (July 2019). The µCT facility at the FAU was supported by a Grant of the German Science Foundation (DFG funding no. 274877207). The comments and modifications provided by two anonymous reviewers significantly improved our manuscript, many thanks to them. This is publication number 47 that uses data from the Senckenberg am Meer Confocal Laserscanning Microscope Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kieneke.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. No endangered species or animals from protected areas were used for this study. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnier, J., Ahlrichs, W.H., Gruhl, A. et al. Ultrastructure of the epidermal gland system of Tetranchyroderma suecicum Boaden, 1960 (Gastrotricha: Macrodasyida) indicates a defensive function of its exudate. Zoomorphology 138, 443–462 (2019). https://doi.org/10.1007/s00435-019-00462-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-019-00462-4

Keywords

Navigation