Skip to main content
Log in

Ion selectivity of colicin E1: II. Permeability to organic cations

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Channels formed by colicin E1 in planar lipid bilayers have large diameters and conduct both cations and anions. The rates at which ions are transported, however, are relatively slow, and the relative anion-to-cation selectivity is modulated over a wide range by the pH of the bathing solutions. We have examined the permeability of these channels to cationic probes having a variety of sizes, shapes, and charge distributions. All of the monovalent probes were found to be permeant, establishing a minimum diameter at the narrowest part of the pore of approximately 9 Å. In contrast to this behavior, all of the polyvalent organic cations were shown to be impermeant. This simple exclusionary rule is interpreted as evidence that, when steric restrictions require partial dehydration of an ion, the structure of the channel is able to provide a substitute electrostatic environment for only one charged group at time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, C.M. 1975. K pores of nerve and muscle membranes. In: Membranes: A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 325–358. Marcel-Dekkker, New York

    Google Scholar 

  2. Baty, D., Knibiehler, M., Verheij, H., Pattus, F., Shire, D., Bernadac, A., Lazdunski, C. 1987. Site-directed mutagenesis of the COOH-terminal region of colicin A: Effect on secretion and voltage-dependent channel activity. Proc. Natl. Acad. Sci. USA 84:1152–1156

    Google Scholar 

  3. Blaustein, R.O., Finkelstein, A. 1988. A hydroxide ion carrier in planar phospholipid bilayer membranes: (C6F5)2Hg (dipentafluorophenylmercury). Biochim. Biophys. Acta 946:221–226

    Google Scholar 

  4. Bockris, J.O'M., Reddy, A.K.N. 1970. Modern Electroschemistry. Plenum, New York

    Google Scholar 

  5. Brunden, K.R., Uratani, Y., Cramer, W.A. 1984. Dependence of the conformation of a colicin E1 channel-forming peptide on acidic pH and solvent polarity. J. Biol. Chem. 259:7682–7687

    Google Scholar 

  6. Bullock, J.O. 1992. Ion selectivity of colicin E1: Modulation by pH and membrane composition. J. Membrane Biol. 125:255–271

    Google Scholar 

  7. Bullock, J.O., Armstrong, S.K., Shear, J.L., Lies, D.P., McIntosh, M.A. 1990. Formation of ion channels by colicin B in planar lipid bilayers. J. Membrane Biol. 114:79–95

    Google Scholar 

  8. Bullock, J.O., Cohen, F.S. 1986. Octyl glucoside promotes incorporation of channel into neutral planar phospholipid bilayers. Studies with colicin Ia. Biochim. Biophys. Acta 856:101–108

    Article  CAS  PubMed  Google Scholar 

  9. Bullock, J.O., Cohen, F.S., Dankert, J.R., Cramer, W.A. 1983. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J. Biol. Chem. 258:9908–9912

    Google Scholar 

  10. Bullock, J.O., Shear, J.L., Kolen, E.R. 1991. Permeability to organic cations of colicin E1 channels in planar lipid bilayers. Biophys. J. 59:323a

    Google Scholar 

  11. Chan, P.T., Ohmori, H., Tomizawa, J., Lebowitz, J. 1985. Nucleotide sequence and gene organization of ColE1 DNA. J. Biol. Chem. 260:8925–8935

    Google Scholar 

  12. Cleveland, M.vB., Slatin, S., Finkelstein, A., Levinthal, C. 1983. Structure-function relationships for a voltage-dependent ion channel: Properties of COOH-terminal fragments of colicin E1. Proc. Natl. Acad. Sci. USA 80:3706–3710

    CAS  PubMed  Google Scholar 

  13. Collarini, M., Amblard, G., Lazdunski, C., Pattus, F. 1987. Gating processes of channels induced by colicin A, its Cterminal fragment and colicin E1 in planar lipid bilayers. Eur. Biophys. J. 14:147–153

    Google Scholar 

  14. Coronado, R., Miller, C. 1982. Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers. J. Gen. Physiol. 79:529–547

    Google Scholar 

  15. Davidson, V.L., Brunden, K.R., Cramer, W.A., Cohen, F.S. 1984. Studies on the mechanism of action of channel-forming colicins using artificial membranes. J. Membrane Biol. 79:105–118

    Google Scholar 

  16. Dwyer, T.M., Adams, D.J., Hille, B. 1980. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75:469–492

    Google Scholar 

  17. Gerzon, K., Cochran, J.E., Jr., White, L.A., Monahan, R., Krumkalns, E.V., Scroggs, R.E., Mills, J. 1959. Structureactivity relationship of some diamine bis-epoxides in mouse leukemia. J. Med. Pharm. Chem. 1:223–243

    Google Scholar 

  18. Hille, B. 1975. Ion selectivity of Na and K channels of nerve membrane. In: Membranes: A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 225–323. Marcel-Dekker, New York

    Google Scholar 

  19. Jakes, K.S., Abrams, C.K., Finkelstein, A., Slatin, S.L. 1990. Alteration of the pH-dependent ion selectivity of the colicin E1 channel by site-directed mutagenesis. J. Biol. Chem. 265:6984–6991

    Google Scholar 

  20. Juvet, R.S. 1959. The N-methylglucamine complexes. I. The lead N-methylglucamine system. J. Am. Chem. Soc. 81:1796–1801

    Google Scholar 

  21. Liu, Q.R., Crozel, V., Levinthal, F., Slatin, S., Finkelstein, A., Levinthal, C. 1986. A very short peptide makes a voltage-dependent ion channel: The critical length of the channel domain of colicin E1. Proteins 1:218–229

    Google Scholar 

  22. Mankovich, J.A., Hsu, C.-H., Konisky, J. 1986. DNA and amino acid sequence analysis of the structural and immunity genes of colicin Ia and Ib. J. Bacteriol. 168:228–236

    Google Scholar 

  23. Martell, A.E., Smith, R.M. 1974. Critical Stability Constants. Vol. 1–6. Plenum, New York

    Google Scholar 

  24. Martinez, C., Lazdunski, C., Pattus, F. 1983. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J. 2:1501–1517

    Google Scholar 

  25. McLaughlin, S. 1977. Electrostatic potentials at membranesolution interfaces. In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 9, pp. 71–144. Academic, New York

    Google Scholar 

  26. Merrill, A.R., Cohen, F.S., Cramer, W.A. 1990. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry 29:5829–5836

    Google Scholar 

  27. Miller, C. 1989. Genetic manipulation of ion channels: A new approach to structure and mechanism. Neuron 2:1195–1205

    Google Scholar 

  28. Montal, M. 1974. Formation of bimolecular membranes from lipid monolayers. Methods Enzymol. 32:545–554

    Google Scholar 

  29. Morlon, J., Lloubes, R., Varenne, S., Chartier, M., Lazdunski, C. 1983. Complete nucleotide sequence of the structural gene for colicin A, a gene translated at non-uniform rate. J. Mol. Biol. 170:271–285

    Google Scholar 

  30. Mullins, L.J. 1961. The macromolecular properties of excitable membranes. Ann. NY Acad. Sci. 94:390–404

    Google Scholar 

  31. Neville, D.M., Hudson, T.H. 1986. Transmembrane transport of diphtheria toxin, related toxins, and colicins. Annu. Rev. Biochem. 55:195–224

    Google Scholar 

  32. Pattus, F., Cavard, D., Verger, R., Lazdunski, C., Rosenbusch, J., Schindler, H. 1983. Formation of voltage dependent pores in planar bilayers by colicin A. In: Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 407–413. Elsevier, Amsterdam

    Google Scholar 

  33. Pattus, F., Massotte, D., Wilmsen, H.U., Lakey, J., Tsernoglou, D., Tucker, A., Parker, M.W. 1990. Colicins: Prokaryotic killer-pores. Experientia 46:180–192

    Google Scholar 

  34. Raymond, L., Slatin, S., Finkelstein, A. 1985. Channels formed by colicin E1 in planar lipid bilayer are large and exhibit pH-dependent ion selectivity. J. Membrane Biol. 84:173–181

    Google Scholar 

  35. Schein, S.J., Kagan, B.L., Finkelstein, A. 1978. Colicin A acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163

    Google Scholar 

  36. Schramm, E., Mende, J., Braun, V., Kamp, R.M. 1987. Nucleotide sequence of the colicin B activity gene cba: Consensus pentapeptide among TonB-dependent colicins and receptors. J. Bacteriol. 169:3350–3357

    Google Scholar 

  37. Shirabe, K., Cohen, F.S., Xu, S., Peterson, A.A., Shiver, J.W., Nakazawa, A., Cramer, W.A. 1989. Decrease of anion selectivity caused by mutation of thr 501 and gly 502 to glu in the hydrophobic domain of the colicin E1 channel. J. Biol. Chem. 264:1951–1957

    Google Scholar 

  38. Shiver, J.W., Cohen, F.S., Merrill, A.R., Cramer, W.A. 1988. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel. Biochemistry 27:8421–8428

    Google Scholar 

  39. Shiver, J.W., Cramer, W.A., Cohen, F.S., Bishop, L.J., deJong, P.J. 1987. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. J. Biol. Chem. 262:14273–14281

    Google Scholar 

  40. Varley, J.M., Boulnois, G.J. 1984. Analysis of a colicin Ib gene: Complete nucleotide sequence and implications for regulation of expression. Nucleic Acids Res. 12:6727–6739

    Google Scholar 

  41. Weaver, C.A.; Kagan, B.L., Finkelstein, A., Konisky, J. 1981. Mode of action of colicin Ib. Formation of ion-permeable membrane channels. Biochim. Biophys. Acta 645:137–142

    Google Scholar 

  42. Wilmsen, H.U., Pugsley, A.P., Pattus, F. 1990. Colicin N forms voltage-and pH-dependent channels in planar lipid bilayer membranes. Eur. Biophys. J. 18:149–158

    Google Scholar 

  43. Wormald, M.R., Merrill, A.R., Cramer, W.A., Williams, R.J.P. 1990. Solution NMR studies of the colicin E1 C-terminal thermolytic peptide. Eur. J. Biochem. 191:155–161

    Google Scholar 

  44. Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T., Nakazawa, A. 1982. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc. Natl. Acad. Sci. USA 79:2827–2831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Dr. F.S. Cohen for helpful comments regarding this manuscript. Technical assistance was provided by J.M. Bockman. This work was supported by NIH Grant GM 37396 and by the Ronald E. McNair Post-Baccalaureate Achievement Program (E.R.K.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, J.O., Kolen, E.R. & Shear, J.L. Ion selectivity of colicin E1: II. Permeability to organic cations. J. Membarin Biol. 128, 1–16 (1992). https://doi.org/10.1007/BF00231866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231866

Key Words

Navigation