Skip to main content
Log in

Cremart: A new chemical for efficient induction of micronuclei in cells and protoplasts for partial genome transfer

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Results on efficient induction of micronuclei by Cremart in suspension cells and protoplasts of potato are reported. Cremart is a highly effective phosphoric amide herbicide, which acts on the mitotic spindle, and induces micronuclei through modification of mitosis. After treatment with Cremart, metaphase chromosomes changed directly into micronuclei without centromere division and chromatid separation. When suspension cells were treated with Cremart (3.7–15.0 μM) for 48h, and subsequently incubated in a mixture of cell wall-digesting enzymes in the presence of cytochalasin-B and Cremart for 18h, the frequency of micronucleation in the cell/protoplast mixture increased significantly, as compared to that obtained after treatment of suspension cells with Cremart (3.7–15.0 μM) for 48 h. Sieving after enzyme incubation resulted in the recovery of protoplasts, showing mass induction of micronuclei. Also synchronized suspension cells of Nicotiana plumbaginifolia responded with high frequency of micronucleation after Cremart (3.7 μM) treatment. The application of this procedure for partial genome transfer is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APM:

Amiprophos-methyl

BAP:

6-Benzyl aminopurine

CB:

Cytochalasin-B

MI:

Mitotic index

MN:

Micronuclei

MS:

Murashige and Skoog

NAA:

1-Naphthalene acetic acid

References

  • Bokelmann GS, Roest S (1983) Z. Pflanzenphysiol. 109: 259–265

    Google Scholar 

  • Derks FHM, Hakkert JC, Verbeek WHJ, Colijn-Hooymans CM (1992) Theor. Appl. Genet. 84: 930–940

    Google Scholar 

  • De Vries-Uijtewaal E, Gilissen LJW, Flipse E, Ramulu KS, Stiekema WJ, De Groot B (1989) Theor. Appl. Genet. 78: 185–193

    Google Scholar 

  • Ege T, Ringertz NR, Hamber H, Sidebottom E (1977) In: Prescott DM (ed) Methods in cell biology; Academic Press, New York: 339–358

    Google Scholar 

  • Famelaer I, Negrutiu I, Mouras A, Vaucheret H, Jacobs M (1990) Theor. Appl. Genet. 79: 513–520

    Google Scholar 

  • Gilissen LJW, Ramulu KS, Flipse E, Meinen E, Stiekema WJ (1991) Acta Bot. Neerl. 40: 53–61

    Google Scholar 

  • Gleba YY, Sytnik KM (1984) Protoplast fusion: Genetic engineering in higher plants. Springer-Verlag, Berlin

    Google Scholar 

  • Gleba YY, Hinnisdaels S, Sidorov VA, Kaleda VA, Parokonny AS, Boryshuk NV, Cherep NN, Negrutiu I, Jacobs M (1988) Theor. Appl. Genet. 76: 760–766

    Google Scholar 

  • Glimelius K (1988) In: Puite KJ, Dons JJM, Huizing HJ, Kool AJ, Koornneef M, Krens FA (eds) Progress in plant protoplast research. Kluwer, Dordrecht, pp 159–168

    Google Scholar 

  • Morejohn LC, Fosket DC (1986) In: Shay JW (ed) Cell and molecular biology of the cytoskeleton, Plenum Publishing Corp., New York, pp 257–329

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15:473–497

    Google Scholar 

  • Puite KJ (1992) Physiol. Plant. 85: 403–410

    Google Scholar 

  • Puite KJ, Schaart JG (1993) Theor. Appl. Genet. 86: 237–244

    Google Scholar 

  • Ramulu KS, Verhoeven HA, Dijkhuis P (1988) Theor. Appl. Genet. 75: 575–584

    Google Scholar 

  • Ramulu KS, Verhoeven HA, Dijkhuis P (1991) Protoplasma 160:65–71

    Google Scholar 

  • Ramulu KS, Dijkhuis P, Famelaer I, Cardi T, Verhoeven HA (1993) Planta 190: 190–198

    Google Scholar 

  • Ramulu KS, Verhoeven HA, Dijkhuis P, Gilissen LJW (1990) Plant Sci. 69: 123–133

    Google Scholar 

  • Ramulu KS, Dijkhuis P, Blaas J, Verbeek WHJ, Verhoeven HA, Colijn-Hooymans CM (1994) In: Proc. EUCARPIA Conf. The Methodology of Plant Genetic Manipulation: Criteria for Decision Making, Cork, Ireland, in press

  • Sacristan MD, Gerdemann-Knörck M, Schieder O (1989) Theor. Appl. Genet. 78: 194–200

    Google Scholar 

  • Simmonds DH (1991) Acta Bot. Neerl. 40: 183–195

    Google Scholar 

  • Sybenga J (1989) In: Bajaj YPS (ed) Biotechnology in agiculture and forestry, 9: Plant protoplasts and genetic engineering II, Springer-Verlag, Heidelberg, pp 26–53

    Google Scholar 

  • Traas JA (1990) In: Larsson C, Moller IM (eds) The plant plasma membrane. Springer, Berlin: pp 269–292

    Google Scholar 

  • Verhoeven HA, Ramulu KS, Dijkhuis P (1990) Planta 182:408–414

    Google Scholar 

  • Verhoeven HA, Ramulu KS, Gilissen LJW, Famelaer I, Dijkhuis P, Blaas J (1991a) Acta Bot. Neerl. 40: 97–113

    Google Scholar 

  • Verhoeven HA, Ramulu KS, Blaas J, Dijkhuis P (1991b) In: Negrutiu I, Ghatri-Chhetri GB (eds) A laboratory guide for cellular and molecular plant biology. Birkhäuser, Basel, pp 346–355

    Google Scholar 

  • Wijbrandi J, Zabel P, Koornneef M (1990) Mol. Gen. Genet. 222: 270–277

    Google Scholar 

  • Wolters AMA, Schoenmakers HCH, VanderMeulen-Muisers JJM, Van der Knaap E, Derks FHM, Koornneef M, Zelcer A (1991) Theor. Appl. Genet. 83: 225–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Glimelius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramulu, K.S., Dijkhuis, P., Famelaer, I. et al. Cremart: A new chemical for efficient induction of micronuclei in cells and protoplasts for partial genome transfer. Plant Cell Reports 13, 687–691 (1994). https://doi.org/10.1007/BF00231625

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231625

Keywords

Navigation