Skip to main content
Log in

Regeneration of plant cell protoplasts under microgravity: Investigation of protein patterns by SDS-PAGE and immunoblotting

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

As part of the D-2 Spacelab mission, tobacco (Nicotiana tabacum L.) protoplasts were cultured for 10 days in microgravity and successfully regenerated into microcalli, which, after further cultivation on the ground, gave rise to intact plants. Protein analysis was performed on samples taken during the initial microgravity period and compared to ground controls. Total protein content and protein patterns were monitored, as well as the cytoskeletal proteins tubulin and actin, a key enzyme of secondary metabolism, phenylalanine ammonia lyase, and the pathogenesis-related protein osmotin. None of the investigated proteins showed a gravity-dependent effect. Since relative changes due to culture age were detectable in the immunoblots as well as in the total protein pattern, an adaptation of the cells to microgravity without major modifications of their protein complement may be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBB:

Coomassie Brilliant Blue

g :

gravity i.e. μg, microgravity

1g :

(ground conditions)

IEF:

isoelectric focussing

MAP:

microtubule associated protein

P(+) and P(−):

vacuolated and evacuolated mesophyll protoplasts

PAGE:

polyacrylamide gel electrophoresis

PAL:

phenylalanine ammonia lyase

PR:

pathogenesis related

SDS:

sodium dodecyl suphate

Tris:

2-Amino-2-(hydroxymethyl)-1,3-propanediol

References

  • Bertrand-Garcia R, Walling LL, Murashige T (1992) Am. J. Bot. 79: 481–487.

    Google Scholar 

  • Bowels DJ (1990) Ann. Rev. Biochem. 59: 873–907.

    Google Scholar 

  • Cyr RJ (1994) Annu. Rev. Cell Biol. 10: 153–180.

    Google Scholar 

  • Cyr RJ, Palevitz BA (1989) Planta 177: 245–260.

    Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1990) J. Cell Biol. 110: 1111–1122.

    Google Scholar 

  • Grosset J, Meyer Y, Chartier Y, Kauffmann S, Legrand M, Fritig B (1990) Plant Physiol. 92: 520–527.

    Google Scholar 

  • Guttenberger M, Neuhoff V, Hampp R (1991) Anal. Biochem. 196: 99–103.

    Google Scholar 

  • Hahlbrock K, Scheel D (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 347–369.

    Google Scholar 

  • Hoffmann EM, Hampp R (1994) Physiol. Plant. 92: 563–570.

    Google Scholar 

  • Hoffmann E, Schönherr K, Johann P, Hampp R (1994) In: Scientific Results of the German Spacelab Mission D-2. (Sahm PR et al., eds.) pp. 133–148. DLR, Köln. ISBN 3–89100–025–1

    Google Scholar 

  • Hoffmann E, Schönherr K, Johann P, Hampp R, von Keller A, Voeste D, Barth S, Schnabl H, Baumann T, Eisenbeiss M, Reinhard E (1995). Microgravity Sci. Tech., in press.

  • Jablonski PP, Elliott RJ, Williamson E (1993) Plant Sci. 94: 35–45.

    Google Scholar 

  • Jung-Heiliger H, Meyer U, Galensa R, Schröder MB, Lehmann H, Holtmann B, Cogoli A (1995) In: Scientific Results of the German Spacelab Mission D-2. (Sahm PR et al., eds.) pp. 558–569. DLR, Köln. ISBN 3–89100–025–1

    Google Scholar 

  • Klintworth R, Schmitz B, Walther S, v.Keller A, Schnabl H, Voeste D, Baumann T, Hampp R, Hoffmann E, Reinhard E, Schönherr K (1994) ESA SP-366, 65–71

  • Laemmli UK (1970) Nature 227: 680–685.

    PubMed  Google Scholar 

  • Lloyd CW, Slabas AR, Powell AI, Lowe SB (1980) Planta 147: 500–506.

    Google Scholar 

  • Meyer Y, Grosset J, Chartier Y, Cleyet-Marel J-C (1988) Electrophoresis 9: 704–712.

    Google Scholar 

  • Naton B, Mehrle W, Hampp R, Zimmermann U (1986) Plant Cell Rep. 5, 419–422

  • Neuhoff V (1982) Funkt. Biol. Med 1, 1–16

    Google Scholar 

  • Neuhoff V, Stamm R, Eibel H (1985) Electrophoresis 6: 427–448.

    Google Scholar 

  • Piastuch WC, Brown CS (1995) J. Plant Physiol. 146: 329–332.

    Google Scholar 

  • Pollard TD, Almo S, Quirk S, Vinson V, Lattmann EE (1994) Annu. Rev. Cell Biol. 10: 207–249.

    Google Scholar 

  • Rasmussen O, Klimchuk DA, Kordyum EL, Danevich LA, Tarnavskaya EB, Lozovaya W, Tairbekov MG, Baggerund C, Iversen T-H (1992) Physiol. Plant. 84: 162–170.

    Google Scholar 

  • Schönherr K, Johann P, Hampp R (1994) Abstracts of the 30th COSPAR Scientific Assembly, Hamburg, Germany, p 280.

  • Schulz M, Solscheid B, Schnabl H (1992) J. Plant Physiol. 140: 502–507

    Google Scholar 

  • Sievers A, Buchen B, Volkmann D, Heinowicz Z (1991) In: The Cytoskeletal Basis of Plant Growth and Form, (Lloyd, C.W., ed.), pp. 169–182. Academic Press, London. ISBN 0–12–453770–7

    Google Scholar 

  • Stirn S, Mordhorst AP, Fuchs S, Lörz H (1995) Plant Science 106: 195–206.

    Google Scholar 

  • Tabony J, Job D (1992) Proc. Natl. Acad. Sci. USA 89: 6948–6952.

    Google Scholar 

  • Vantard M, Schellenbaum P, Fellous A, Lambert A-M (1991) Biochemistry 30: 9334–9340.

    Google Scholar 

  • Wiche G (1989) Biochem. J. 259: 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. W. Weiler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, E., Schönherr, K. & Hampp, R. Regeneration of plant cell protoplasts under microgravity: Investigation of protein patterns by SDS-PAGE and immunoblotting. Plant Cell Reports 15, 914–919 (1996). https://doi.org/10.1007/BF00231587

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231587

Keywords

Navigation