Skip to main content
Log in

The posterior hypothalamus is responsible for the increase of brain temperature during paradoxical sleep

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Electroencephalogram, caudate nucleus temperature (Tc), ear skin temperature (Te) as well as cerebral blood flow (CBF) measured by a thermal clearance method, were recorded simultaneously and continuously in cats. After baseline recording in which we confirmed the increase of Tc during paradoxical sleep (PS), neuronal cell bodies of the mesencephalic reticular formation and/or the posterior hypothalamus (PH) were destroyed with ibotenic acid. Only PH lesions were followed by either a suppression of the increase or even a decrease of Tc during PS while Te variations were not modified. The decrease in CBF, which was always associated with Tc increase, was suppressed after the PH lesion. These results led us to the conclusion that the increase of Tc at the onset of PS is due to a decrease in CBF. Furthermore, it may be hypothetized that the decrease in CBF depend upon an active vasoconstriction process originating in the PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baust W (1967) Local blood flow in different regions of the brain stem during natural sleep and arousal. Electroencephalogr Clin Neurophysiol 22: 365–372

    Google Scholar 

  • Baust W, Weidinger H, Kirchner F (1968) Sympathetic activity during natural sleep and arousal. Arch Ital Biol 106: 379–390

    Google Scholar 

  • Berman AL, Jones EG (1982) The thalamus and basal telencephalon of the cat: a cytoarchitectonic atlas with coordinates. The University of Wisconsin Press, London

    Google Scholar 

  • Bonvento G, Lacombe P, Seylaz J (1989) Effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow in the rat. J Cereb Blood Flow Metabol 9: 251–255

    CAS  PubMed  Google Scholar 

  • Bowman HF, Balasubramaniam TA (1977) Determination of tissue perfusion from in vivo thermal conductivity measurements: heat transfer in biotechnology. Asme Publication 77-WA/HT-40

  • Busija DW, Heistad DD (1984) Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 101: 161–211

    Google Scholar 

  • De la Torre JC (1976) Evidence for central innervation of intracerebral blood vessels: local cerebral flood flow measurements and histofluorescence analysis by the sucrose-phosphate-glyoxylic acid (SPG) method. Neurosci 1: 455–457

    Google Scholar 

  • Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M (1991) Neurotoxic lesion of the mesencephalic reticular formation and/ or the posterior hypothalamus does not alter waking in the cat. Brain Res (in press)

  • Dittmar A (1986) Conception, réalisation et validation d'une instrumentation pour la mesure de l'irrigation sanguine tissulaire par thermoconductivité. Thèse d'Etat. Lyon

  • Dufour R, Court L (1977) Le débit cérébral sanguin au cours du sommeil paradoxal du lapin. Arch Ital Biol 115: 57–76

    Google Scholar 

  • Economo C von (1926) Die Pathologie des Schlafes. In: A. Von Bethe, G v Bergmann, G. Embden, A. Ellinger (eds) Handbuch der normalen und pathologischen Physiologie, Vol 17. Springer, Berlin, pp 591–610

    Google Scholar 

  • Futuro-Neto HA, Coote JH (1982) Changes in sympathetic activity to heart and blood vessels during desynchronised sleep. Brain Res 252: 259–268

    Google Scholar 

  • Guyenet PG, Young BS (1987) Projections of nucleus paragigantocellularis lateralis to locus coeruleus and other structures in rat. Brain Res 406: 171–184

    Google Scholar 

  • Hayward JN, Baker MA (1969) A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res 16: 417–440

    Article  CAS  PubMed  Google Scholar 

  • Hosoya Y, Sugiura Y, Zhang FZ, Ito R, Kohno K (1989) Direct projection from the dorsal hypothalamic area to the nucleus raphe pallidus: a study using anterograde transport with phaseolus vulgaris leucoagglutinin in the rat. Exp Brain Res 75: 40–46

    Google Scholar 

  • Itakura T, Tohyama M, Nakai K (1977) Experimental and morphological study of the innervation of cerebral blood vessels. Acta Histochem Cytochem 10: 52–65

    Google Scholar 

  • Karplus JP, Kreidl A (1909) Gehirn und Sympathicus. I. Zwischenhirnbasis und Halssympathicus. Pflügers Arch 129: 138–144

    Google Scholar 

  • Karplus JP, Kreidl A (1927) Gehirn und Sympathicus. VII. Über Beziehungen der Hypothalamuszentren zu Blutdruck und innerer Sekretion. Pflügers Arch 215: 667–670

    Google Scholar 

  • Kawamura H, Withmoyer DI, Sawyer CH (1966) Temperature changes in the rabbit brain during paradoxical sleep. Electroencephal Clin Neurophysiol 21: 469–477

    Google Scholar 

  • Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, Jouvet M (1988) Immunohistochemistry of aromatic L-amino acid decarboxylase in the cat forebrain. J Comp Neurol 270: 337–353

    Google Scholar 

  • Kohler C, Schwartz R, Fuxe K (1979) Intrahippocampal injections of ibotenic acid provide histological evidence for a neurotoxic mechanism different from kainic acid. Neurosci Lett 15: 223–228

    Google Scholar 

  • Kovalzon VM (1973) Brain temperature variations during natural sleep and arousal in white rats. Physiol Behav 10: 667–670

    Google Scholar 

  • Lacombe P, Sercombe R, Verrecchia C, Philipson V, MacKenzie ET, Seylaz J (1989) Cortical blood flow increases induced by stimulation of the substantia innominata in the unanesthetized rat. Brain Res 491: 1–14

    Google Scholar 

  • Lenzi P, Cianci T, Guidalotti PL, Leonardi GS, Franzini C (1987) Brain circulation during sleep and its relation to extracerebral hemodynamics. Brain Res 415: 14–20

    Google Scholar 

  • Lin JS, Luppi PH, Salvert D, Sakai K, Jouvet M (1986) Neurones immunoreactifs à l'histamine dans l'hypothalamus chez le chat. C R Acad Sci 303: 371–376

    Google Scholar 

  • Lin JS, Sakai K, Vanni-Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479: 225–240

    Google Scholar 

  • Mancia G, Zanchetti A (1981) Hypothalamic control of autonomic functions. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, Vol 3b. M. Dekker, New York, pp 147–201

    Google Scholar 

  • Mancia G, Baccelli G, Adams DB, Zanchetti A (1971) Vasomotor regulation during sleep in the cat. Am J Physiol 220: 1086–1093

    Google Scholar 

  • McCook RD, Reiss CN, Randall WC (1962) Hypothalamic temperatures and blood flow. Proc Soc Exp Biol 109: 518–521

    Google Scholar 

  • Nakai M, Iadecola C, Ruggiero DA, Tucker LW, Reis DJ (1983) Electrical stimulation of cerebellar fastigial nucleus increases cerebral cortical blood flow without change in local metabolism: evidence for an intrinsic system in brain for primary vasodilation. Brain Res 260: 35–49

    Google Scholar 

  • Nauta WJH (1946) Hypothalamic regulation of sleep in rats: an experimental study. J Neurophysiol 9: 285–316

    Google Scholar 

  • Parmeggiani PL (1980) Temperature regulation during sleep: a study in homeostasis. In: Orem J, Barnes CD (eds) Physiology in sleep. Academic Press Inc, New York, pp 97–143

    Google Scholar 

  • Parmeggiani PL, Zamboni G, Perez E, Lenzi P (1984) Hypothalamic temperature during desynchronized sleep. Exp Brain Res 54: 315–320

    Google Scholar 

  • Reiner PB (1986) Correlational analysis of central noradrenergic neuronal activity and sympathetic tone in behaving cats. Brain Res 378: 86–96

    Google Scholar 

  • Reis DJ, Moorhead D, Wooten GF (1968) Redistribution of visceral and cerebral blood flow in the REM phase of sleep. Neurology 18: 282

    Google Scholar 

  • Reite ML, Pegram GV (1968) Cortical temperature during paradoxical sleep in the monkey. Electroencephalogr Clin Neurophysiol 26: 36–41

    Google Scholar 

  • Reivich M, Isaacs G, Evarts E, Kety S (1968) The effect of slow wave sleep and REM sleep on regional cerebral blood flow in cats. J Neurochem 15: 301–306

    Google Scholar 

  • Ross CA, Ruggiero DA, Park DH, Joh TFH, Sved AF, Fernando-Pardal J, Saavedra JM, Reis DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical and chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure heart rate and plasma catecholamines and vasopressin. J Neurosci 4: 474–494

    Google Scholar 

  • Roussel B, Dittmar A, Chouvet G (1980) Internal temperature variations during the sleep wake cycle in the rat. Waking Sleeping 4: 63–75

    Google Scholar 

  • Roussel B, Dittmar A, Delhomme G, Mehier H (1982) Cerebral blood flow and temperature changes in physiological and pharmacological conditions: environment, drugs and thermoregulation. 5th Int. Symp Pharmacol Thermoregulation, Saint-Paulde-Vence, pp 14–18

  • Sallanon M, Sakai K, Buda C, Puymartin M, Jouvet M (1987) Increase of paradoxical sleep induced by microinjections of ibotenic acid into the ventrolateral part of the posterior hypothalamus in the cat. Arch Ital Biol 126: 87–97

    Google Scholar 

  • Santiago TV, Guerra E, Neubauer JA, Edelman H (1984) Correlation between ventilation and brain blood flow during sleep. J Clin Invest 73: 497–506

    Google Scholar 

  • Sercombe R, Aubineau P, Edvinsson L, Mamo H, Owman CH, Pinard E, Seylaz J (1975) Neurogenic influence on local cerebral blood flow. Neurology 25: 954–963

    Google Scholar 

  • Seylaz J, Goas JY, MacLeod P, Caron JP, Houdart R (1971) Local cortical blood flow during paradoxical sleep in man. Arch Ital Biol 109: 1–14

    Google Scholar 

  • Seylaz J, Dittmar A, Pinard E, Birer A (1979) Measurement of blood flow tissue, PO2 and PCO2 continuously and simultaneously in the same structure of the brain. Med Biol Engineer Comput 17: 19–24

    Google Scholar 

  • Shapiro CM, Rosendorff C (1975) Local hypothalamic blood flow during sleep. Electroencephal Clin Neurophysiol 39: 365–369

    Google Scholar 

  • Staines WMA, Yamamoto T, Daddona PE, Nagy JI (1986) Neuronal colocalization of adenosine deaminase, monoamine oxidase, galanin and 5-hydroxytryptophan uptake in the tuberomammilary nucleus of the rat. Brain Res Bull 17: 351–365

    Google Scholar 

  • Swanson LW, Connelly MA, Hartman BK (1977) Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus. Brain Res 136: 166–173

    Google Scholar 

  • Tachibana S (1969) Relation between hypothalamic heat production and intraand extracranial circulatory factors. Brain Res 16: 405–416

    Google Scholar 

  • Takeuchi Y, Kimura H, Sano Y (1982) Immunohistochemical demonstration of the distribution of serotonin neurons in the brain stem of the rat and cat. Cell Tissue Res 224: 247–264

    Google Scholar 

  • Valatx JL, Roussel B, Curé M (1973) Sommeil et température cérébrale du rat au cours de l'exposition chronique en ambiance chaude. Brain Res 55: 107–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denoyer, M., Sallanon, M., Buda, C. et al. The posterior hypothalamus is responsible for the increase of brain temperature during paradoxical sleep. Exp Brain Res 84, 326–334 (1991). https://doi.org/10.1007/BF00231453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231453

Key words

Navigation