Skip to main content
Log in

Changes in thermoregulation and monoamine release in freely moving rats during cold exposure and inhibition of the ventromedial, dorsomedial, or posterior hypothalamus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The hypothalamus is critical for regulating thermogenesis, but the role of monoamines in specific hypothalamic subregions in thermogenesis is not thoroughly established. The purpose of this study was to confirm changes of body temperature (T b) and thermoregulatory parameters upon inhibition of neural activity in hypothalamic subregions in freely moving rats. In addition, the pattern of monoamine release in these nuclei was measured during active thermoregulation using microdialysis. Tetrodotoxin (TTX) was perfused into the ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), or posterior hypothalamus (PH) at two different ambient temperatures (5 or 23 °C). Using telemetry, we continuously measured the T b and the heart rate (HR) as an index of heat production as well as locomotor activity (Act). Tail skin temperature (T tail) was also continuously measured as an index of heat loss. Although the perfusion of TTX into hypothalamic subregions had no effect on any of the measured thermoregulatory parameters at an ambient temperature of 23 °C, it induced significant T b decrease under cold conditions only when perfused into the DMH and the PH. In contrast, the HR decreased only after perfusion of TTX into the PH during cold conditions, while the T tail and Act remained unchanged. Serotonin (5-HT) in the DMH and dopamine (DA) metabolite 3,4-Dihydroxyphenylacetic acid in the PH, but not noradrenaline, increased significantly during exposure to cold temperatures. Our results indicate that the DMH and the PH, but not the VMH, are particularly involved in heat production under cold conditions. In addition, 5-HT in the DMH and DA in the PH may be involved in thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

5-HIAA:

5-Hydroxyindoleacetic acid

Ad:

Adrenaline

Act:

Locomotor activity

DA:

Dopamine

DMH:

Dorsomedial hypothalamus

DOPAC:

3,4-Dihydroxyphenylacetic acid

HPLC:

High-performance liquid chromatography

HR:

Heart rate

HVA:

Homovanillic acid

IBAT:

Interscapular brown adipose tissue

NA:

Noradrenaline

PH:

Posterior hypothalamus

PO/AH:

Preoptic area and anterior hypothalamus

PRV:

Pseudorabies virus

T b :

Body temperature

T tail :

Tail skin temperature

TTX:

Tetrodotoxin

VMH:

Ventromedial hypothalamus

References

  • Amir S (1990a) Intra-ventromedial hypothalamic injection of glutamate stimulates brown adipose tissue thermogenesis in the rat. Brain Res 511:341–344

    Article  CAS  PubMed  Google Scholar 

  • Amir S (1990b) Activation of brown adipose tissue thermogenesis by chemical stimulation of the posterior hypothalamus. Brain Res 534:303–308

    Article  CAS  PubMed  Google Scholar 

  • Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 276:R1569–R1578

    CAS  PubMed  Google Scholar 

  • Boulant JA, Dean JB (1986) Temperature receptors in the central nervous system. Annu Rev Physiol 48:639–654

    Article  CAS  PubMed  Google Scholar 

  • Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF, Sved AF (2003) Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol 460:303–326

    Article  PubMed  Google Scholar 

  • Carlisle HJ, Laudenslager ML (1979) Observation on thermoregulatory effects of preoptic warming in rats. Physiol Behav 23:723–732

    Article  CAS  PubMed  Google Scholar 

  • Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, Tupone D, Zamboni G, Amici R (2014) Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 9(11):e112849

    Article  PubMed  PubMed Central  Google Scholar 

  • Chambers JB, Williams TD, Nakamura A, Henderson RP, Overton JM, Rashotte ME (2000) Cardiovascular and metabolic responses of hypertensive and normotensive rats to one week of cold exposure. Am J Physiol 279:R1486–R1494

    CAS  Google Scholar 

  • Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean JB, Boulant JA (1989) In vitro localization of thermosensitive neurons in the rat diencephalon. Am J Physiol 257:R57–R64

    CAS  PubMed  Google Scholar 

  • Dimicco JA, Zaretsky DV (2007) The dorsomedial hypothalamus: a new player in thermoregulation. Am J Physiol 292:R47–R63

    CAS  Google Scholar 

  • Freeman PH, Wellman PJ (1987) Brown adipose tissue thermogenesis induced low level electrical stimulation of hypothalamus in rats. Brain Res Bull 18:7–11

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara K, Kvetnansky R, Cizza G, Pacak K, Ohara H, Goldstein DS, Kopin IJ (1996) Interrelations between sympathoadrenal system and hypothalamo-pituitary-adrenocortical/thyroid systems in rats exposed to cold stress. J Neuroendocrinol 8:533–541

    Article  CAS  PubMed  Google Scholar 

  • Gilbert TM, Blatteis CM (1977) Hypothalamic thermoregulatory pathways in the rat. J Appl Physiol 43:770–777

    Article  CAS  PubMed  Google Scholar 

  • Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991

    Article  CAS  PubMed  Google Scholar 

  • Halvorson I, Thornhill JA (1993) Posterior hypothalamic stimulation of anesthetized normothermic and hypothermic rats evokes shivering thermogenesis. Brain Res 610:208–215

    Article  CAS  PubMed  Google Scholar 

  • Halvorson I, Gregor L, Thornhill JA (1990) Brown adipose tissue thermogenesis is activated by electrical and chemical (l-glutamate) stimulation of the ventromedial hypothalamic nucleus in cold-acclimated rats. Brain Res 522:76–82

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Yazawa T, Yasumatsu M, Otokawa M, Aihara Y (2000) Alternation in dopamine metabolism in the thermoregulatory center of exercising rats. Neurosci Lett 289:161–164

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Ishiwata T, Saito T, Yazawa T, Aihara Y, Meeusen R (2005) Inhibition of the preoptic area and anterior hypothalamus by tetrodotoxin alters thermoregulatory functions in exercising rats. J Appl Physiol 98:1458–1462

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Takatsu S, Ishiwata T, Tanaka H, Sarre S, Meeusen R (2011) Continuous monitoring of hypothalamic neurotransmitters and thermoregulatory responses in exercising rats. J Neurosci Methods 202:119–123

    Article  CAS  PubMed  Google Scholar 

  • Holt SJ, Wheal HV, York DA (1987) Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res 405:227–233

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata T, Hasegawa H, Yazawa T, Otokawa M, Aihara Y (2002) Functional role of the preoptic area and anterior hypothalamus in thermoregulation in freely moving rats. Neurosci Lett 325:167–170

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata T, Saito T, Hasegawa H, Yazawa T, Otokawa M, Aihara Y (2004) Changes of body temperature and extracellular serotonin level in the preoptic area and anterior hypothalamus after thermal or serotonergic pharmacological stimulation of freely moving rats. Life Sci 75:2665–2675

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata T, Saito T, Hasegawa H, Yazawa T, Kotani Y, Otokawa M, Aihara Y (2005) Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures. Brain Res 1048:32–40

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata T, Oshimoto A, Saito T, Kotani Y, Nomoto S, Aihara Y, Hasegawa H, Greenwood BN (2016) Possible mechanisms of hypothermia after inhibition of the median or dorsal raphe nucleus of freely moving rats. NeuroReport 27:1287–1292

    Article  PubMed  Google Scholar 

  • Jones DL, Veale WL, Cooper KE (1980) Alterations in body temperature elicited by intrahypothalamic administration of tetrodotoxin, ouabain and A23187 ionophore in the conscious cat. Brain Res Bull 5:75–80

    Article  CAS  PubMed  Google Scholar 

  • Kerman IA, Akil H, Watson SJ (2006) Rostral elements of sympatho-motor circuitry: a virally mediated transsynaptic tracing study. J Neurosci 26:3423–3433

    Article  CAS  PubMed  Google Scholar 

  • Kiyohara T, Miyata S, Nakamura T, Shido O, Nakashima T, Shibata M (1995) Differences in Fos expression in the rat brains between cold and warm ambient exposures. Brain Res Bull 38:193–201

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Osaka T, Namba Y, Inoue S, Kimura S (1999) CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production. Brain Res 827:176–184

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Thornhill J (1990) Thermoresponsiveness of posterior hypothalamic (PH) neurons of rats to scrotal and abdominal thermal stimulation. Brain Res 794:80–87

    Article  Google Scholar 

  • Martelli D, Luppi M, Cerri M, Tupone D, Mastrotto M, Perez E, Zamboni G, Amici R (2014) The direct cooling of the preoptic-hypothalamic area elicits the release of thyroid stimulating hormone during wakefulness but not during REM sleep. PLoS One 9:e87793

    Article  PubMed  PubMed Central  Google Scholar 

  • McKitrick DJ (2000) Expression of Fos in the hypothalamus of rats exposed to warm and cold temperatures. Brain Res Bull 53:307–315

    Article  CAS  PubMed  Google Scholar 

  • Monda M, Viggiano A, De Luca V (2000) Intracerebroventricular injection of prostaglandin E(1) changes concentrations of biogenic amines in the posterior hypothalamus of the rat. Brain Res 873:197–202

    Article  CAS  PubMed  Google Scholar 

  • Morimoto A, Murakami N, Ono T, Watanabe T, Sakata Y (1986) Stimulation of ventromedial hypothalamus induces cold defense responses in conscious rabbits. Am J Physiol 250:R560–R566

    CAS  PubMed  Google Scholar 

  • Morishima MS, Gale CC (1972) Relationship of blood pressure and heart rate to temperature in baboons. Am J Physiol 223:387–395

    CAS  PubMed  Google Scholar 

  • Morrison SF (2016) Central control of body temperature. F1000Res 5:880. doi:10.12688/f1000research.7958.1

    Article  Google Scholar 

  • Morrison SF, Madden CJ (2014) Central nervous system regulation of brown adipose tissue. Comp Physiol 4:1677–1713

    Article  Google Scholar 

  • Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589:3641–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ootsuka Y, Tanaka M (2015) Control of cutaneous blood flow by central nervous system. Temperature (Austin) 2:392–405

    Article  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Perkins MN, Rothwell NJ, Stock MJ, Stone TW (1981) Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289:401–402

    Article  CAS  PubMed  Google Scholar 

  • Quan N, Blatteis CM (1989) Microdialysis: a system for localized drug delivery into the brain. Brain Res Bull 22:621–625

    Article  CAS  PubMed  Google Scholar 

  • Rathner JA, Madden CJ, Morrison SF (2008) Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am J Physiol 295:R343–R354

    CAS  Google Scholar 

  • Redfors B, Shao Y, Omerovic E (2014) Influence of anesthetic agent, depth of anesthesia and body temperature on cardiovascular functional parameters in the rat. Lab Anim 41:6–14

    Article  Google Scholar 

  • Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol 292:R37–R46

    CAS  Google Scholar 

  • Saito T (2011) Effect of several durations of cold exposure on brain monoamines concentrations in the dorso medial hypothalamus in rats. J Kyoei Univ 9:55–59

    Google Scholar 

  • Saito T, Ishiwata T, Hasegawa H, Nomoto S, Otokawa M, Aihara Y (2005) Changes in monoamines in rat hypothalamus during cold acclimation. J Thermal Biol 30:229–235

    Article  CAS  Google Scholar 

  • Saito T, Ishiwata T, Hasegawa H, Nomoto S, Kotani Y, Otokawa M, Aihara Y (2008) Effect of chronic cold exposure on noradrenergic modulation in the preoptic area of thermoregulation in freely moving rats. Life Sci 83:79–84

    Article  CAS  PubMed  Google Scholar 

  • Song K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA (2016) Warm-sensitive neurons that control body temperature. Cell 167:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Tonouchi M, Hosono T, Nagashima K, Yanase-Fujiwara M, Kanosue K (2001) Hypothalamic region facilitating shivering in rats. Jpn J Physiol 51:625–629

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, McKinley MJ, McAllen RM (2011) Preoptic-raphé connections for thermoregulatory vasomotor control. J Neurosci 31:5078–5088

    Article  CAS  PubMed  Google Scholar 

  • Van Daele DJ, Cassell MD (2009) Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle. Neuroscience 162:501–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerink BHC (1995) Brain microdialysis and its application for the study of animal behaviour. Behav Brain Res 70:103–124

    Article  CAS  PubMed  Google Scholar 

  • Wixson SK, White WJ, Hughes HC Jr, Lang CM, Marshall WK (1987) The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on core and surface body temperature regulation in adult male rats. Lab Anim Sci 37:743–749

    CAS  PubMed  Google Scholar 

  • Yasumatsu M, Yazawa T, Otokawa M, Kuwasawa K, Hasegawa H, Aihara Y (1998) Monoamines, amino acids and acetylcholine in the preoptic area and anterior hypothalamus of rats: measurements of tissue extracts and in vivo microdialysates. Comp Biochem Physiol A 121:13–23

    Article  CAS  Google Scholar 

  • Zaretskaia MV, Zaretsky DV, Shekhar A, DiMicco JA (2002) Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats. Brain Res 928:113–125

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Yanase-Fujiwara M, Hosono T, Kanosue K (1995) Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J Physiol 485:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao ZD, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, Chen W, Ni X, Lin JK, Yang J, Xu XH, Shen WL (2017) A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci USA 114:2042–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was partly supported by JSPS KAKENHI Grant Number JP23700684 (T.I.). We thank Drs. Yasutsugu Aihara (Tokyo Metropolitan University), Hiroshi Hasegawa (Hiroshima University), and Takehito Saito (Kyoei University) for valuable discussion throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Ishiwata.

Ethics declarations

Conflict of interest

The authors of the present study declare no conflict of interest.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiwata, T., Greenwood, B.N. Changes in thermoregulation and monoamine release in freely moving rats during cold exposure and inhibition of the ventromedial, dorsomedial, or posterior hypothalamus. J Comp Physiol B 188, 541–551 (2018). https://doi.org/10.1007/s00360-017-1130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1130-5

Keywords

Navigation