Skip to main content
Log in

The molecular basis of drug-induced G2 arrest in mammalian cells

  • Review Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The purpose of this review was to focus mainly on the molecular events related to the progression of cells through the G2 period to examine the cause for G2-arrest in mammalian cells after exposure to various anticancer drugs. With few exceptions, most of the eukaryotic cells exhibit a G2 period in their life cycles. The G2 period, which separates S phase from mitosis, represents the time necessary for the synthesis of the various components related to the condensation of chromosomes, assembly of the mitotic spindle, and cytokinesis. Continued synthesis of RNA and protein is necessary for the successful completion of G2 and the initiation of mitosis. Inhibition of RNA and protein synthesis, replacement of phenylalanine by its analog parafluorophenylalanine, or the elevation of intracellular cAMP concentrations, induce reversible G2 arrest in cultured cells. Exposure of cells to certain antineoplastic drugs also blocks cells preferentially in G2. This irreversible drug-induced G2 arrest is associated with extensive chromosome damage. The G2-arrested cells were found to be deficient in certain proteins that may be specific for the G2-mitotic transition. These mitotic or chromosome condensation factors synthesized during the G2 period, reach their maximum levels at mitosis. A preliminary characterization of the chromosome condensation factor revealed that it is a heat labile, Ca2+-sensitive, nondialyzable protein with a sedimentation value of 4–5S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howard, A. and Pelc, S. R., 1953. Heredity Suppl. 6, 261–273.

    Google Scholar 

  2. Lawrence, P. A., 1968. J. Cell Sci. 3, 391–404.

    Google Scholar 

  3. Liskay, R. M., 1977. Proc. Natl. Acad. Sci. USA 74, 1622–1625.

    Google Scholar 

  4. Taylor, E. W., 1963. J. Cell Biol. 19, 1–18.

    Google Scholar 

  5. Caspersson, T., Farber, S., Foley, G. E., and Killander, D., 1963. Exptl. Cell Res. 32, 529–552.

    Google Scholar 

  6. Arrighi, F. E., and Hsu, T. C., 1965. Exptl. Cell Res. 39,305–308.

    Google Scholar 

  7. Kishimoto, S. and Lieberman, I., 1964. Exptl. Cell Res. 36,92–101.

    Google Scholar 

  8. Tobey, R. A., Petersen, D. F., Anderson, E. C., and Puck, T. T., 1966. Biophys. J. 6, 567–581.

    Google Scholar 

  9. Rao, P. N. and Johnson, R. T., 1970. Nature (London) 225,159–164.

    Google Scholar 

  10. Rao, P. N., Hittelman, W. N., and Wilson, B. A., 1975. Exptl. Cell Res. 90, 40–46.

    Google Scholar 

  11. Rusch, H. P., Sachsenmaier, W., Behrens, K., and Gruter, V., 1966. J. Cell Biol. 31, 204–209.

    Google Scholar 

  12. Gelfant, S., 1963. Symp. Int. Soc. Cell Biol. 2, 229–259.

    Google Scholar 

  13. Vant Hof, J., Hoppin, D. P., and Yagi, S., 1973. Am. J. Bot. 60, 889–895.

    Google Scholar 

  14. Webster, P. L. and Vant Hof, J., 1970. Am. J. Bot. 57, 130–139.

    Google Scholar 

  15. Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W., and Howard, J. C. Nature (London) 266, 550–552.

  16. Williams, A. F., Galfre, G., and Milstein, C., 1977. Cell 12,663–673.

    Google Scholar 

  17. Evans, L. S., Almeida, M. S., Lynn, D. G., and Nakanishi, K., 1979. Science 203, 1122–1123.

    Google Scholar 

  18. Barnstable, C. J., Bodmer, W. F., Brown, G., Galfre, G., Milstein, C., Williams, A. F., and Ziegler, A., 1978. Cell 14, 9–20.

    Google Scholar 

  19. Wheatley, D. N. and Inglis, M. S., 1977. Exptl. Cell Res. 107, 191–199.

    Google Scholar 

  20. Wheatley, D. N. and Henderson, J. Y., 1975. Exptl. Cell Res. 92, 211–220.

    Google Scholar 

  21. Sisken, J. E. and Wilkes, E., 1967. J. Cell Biol. 34, 97–110.

    Google Scholar 

  22. Sheppard, J. R. and Prescott, D. M., 1972. Exptl. Cell Res. 75, 293–296.

    Google Scholar 

  23. Burger, M. M., Bombik, B. M., Breckenridge, B. McL., and Sheppard, J. R., 1972. Nature (London) New Biol. 239,161–163.

    Google Scholar 

  24. Zeilig, C. E., Johnson, R. A., Friedman, D. L., and Sutherland, E. W., 1972. J. Cell Biol. 55, 296a.

    Google Scholar 

  25. Willingham, M. C., Johnson, G. S., and Pastan, I., 1972. Biochem. Biophys. Res. Comm. 48, 743–748.

    Google Scholar 

  26. Nose, K. and Katsuta, H., 1975. Biochem. Biophys. Res. Comm. 64, 983–988.

    Google Scholar 

  27. Sunkara, P. S., Rao, P. N., Thompson, W. J., and Strada, S. J., 1979. J. Cell Biol. (in press).

  28. Barlogie, B., Drewinko, B., Johnston, D. A., and Freireich, E. J., 1976. Cancer Res. 36, 1975–1979.

    Google Scholar 

  29. Krishan, A. and Frei, III, E., 1976. Cancer Res. 36, 143–150.

    Google Scholar 

  30. Gohde, W., Schuman, N. J., Buchner, T., and Barlogie, B., 1974. in Ergebnisse der Adriamycin-Therapie Adriamycin Symposium (Ghione, M., Fetzer, J., and Maier, H., eds.) pp 14–23, Springer-Verlag, Frankfurt/Main.

  31. Ohtsuki, K. and Ishida, N., 1975. J. Antibiot. (Tokyo) 28,143–148.

    Google Scholar 

  32. Ebina, T., Ohtsuki, K., Seto, M., and Ishida, N., 1975. Europ. J. Cancer 11, 155–158.

    Google Scholar 

  33. Barlogie, B., Drewinko, B., Gohde, W., and Bodey, G. P., 1977. Cancer Res. 37, 2583–2588.

    Google Scholar 

  34. Misra, N. C. and Roberts, D., 1975. Cancer Res. 35, 99–105.

    Google Scholar 

  35. Krishan, A., Paika, K., and Frei, III, E., 1975. J. Cell Biol. 66, 521–530.

    Google Scholar 

  36. Puck, T. T. and Steffan, J., 1963. Biophys. J. 3, 379–397.

    Google Scholar 

  37. Bedford, J. S. and Mitchell, J. B., 1977. Radiat. Res. 70,641.

    Google Scholar 

  38. Tobey, R. A. and Crissman, H. A., 1975. Cancer Res. 35,460–470.

    Google Scholar 

  39. Rao, A. P. and Rao, P. N., 1976. J. Natl. Cancer Inst. 57,1139–1143.

    Google Scholar 

  40. Rao, P. N., Wilson, B. A., and Puck, T. T., 1977. J. Cell Physiol. 91, 131–141.

    Google Scholar 

  41. Al-Bader, A. A., Orengo, A., and Rao, P. N., 1978. Proc. Natl. Acad. Sci. USA 75, 6064–6068.

    Google Scholar 

  42. Mahagaokar, S., Rao, P. N., and Barlogie, B., 1976. J. Natl. Cancer Inst. 57, 1305–1310.

    Google Scholar 

  43. Wheeler, G. P., Bono, V. H., Bowdon, B. J., Adamson, D. J., and Brockman, R. W., 1976. Cancer Treat. Rep. 60,1307–1316.

    Google Scholar 

  44. Brockman, R. W., Shaddix, S. C., Williams, M. and Struck R. F. 1976. Cancer Treat. Rep. 60, 1317–1324.

    Google Scholar 

  45. Rao, P. N. and Engelberg, J., 1966. in Cell Synchrony: Studies in Biosynthetic Regulation (Cameron, I. L. and Padilla, G. M. eds.) pp. 332–352, Academic Press, New York.

  46. Sunkara, P. S., Wright, D. A., and Rao, P. N., 1979. Proc. Nat]. Acad. Sci. USA 76, 2799–2802.

    Google Scholar 

  47. Sunkara, P. S., Wright, D. A., and Rao, P. N., 1979. J. Supramol. Struct. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, P.N. The molecular basis of drug-induced G2 arrest in mammalian cells. Mol Cell Biochem 29, 47–57 (1980). https://doi.org/10.1007/BF00230954

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230954

Keywords

Navigation