Skip to main content
Log in

Evidence for a specific phosphoryl binding site in swine kidney phosphofructokinase

  • Original Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Phosphofructokinase (PFK) from swine kidney was purified by a procedure which included affinity chromatography on Cibacron blue F3GA-Sepharose 4B and ATP-Sepharose 413 columns in order to examine its binding properties. The homogeneous enzyme was purified more than 3 000-fold with a yield of 30% and it had a specific activity of 39.8 µmol/min/ mg of protein at 25°C. The molecular weight of the native enzyme was 360 000 and it contained 4 identical subunits of molecular weight 88 000. The principal catalytically reacting form of the enzyme had a S20,w of 13.7 S which corresponds to a molecular weight of 360 000 ± 6 000. The initial velocity patterns in the forward and reverse directions suggested a sequential mechanism for the reaction. The Km values for fructose 6-phosphate, ATP, fructose, 1,6-bisP and ADP were 33 µM, 8.3 µM, 460 µM, and 110 µM, respectively.

The homogeneous native enzyme binds specifically to phosphoryl groups immobilized in cellulose phosphate columns. ATP and fructose 6-phosphate interacted with the enzyme and decreased its affinity for phosphoryl binding sites. Other metabolites including fructose 1,6-bisP, glucose 6-phosphate and various nucleotides, alone or in various combinations, were ineffective in promoting the dissociation of the enzyme. Allosteric effectors of the enzyme, such as citrate and AMP were also inactive. However, they cooperatively altered the eoncentration of ATP required to dissociate the enzyme from phosphoryl groups. The bound enzyme was enzymatically inactive. The enzyme was also inactivated when it was treated with pyridoxal 5′-phosphate and reduced with sodium borohydride and the inactive enzyme no longer bound to cellulose phosphate. These effects were not observed when treatment with pyridoxal 5′-phosphate was carried out in the presence of fructose 6-phosphate.

These observations and the results of similar studies with swine kidney fructose 1,6-bisphosphatase (FBPase) show that both enzymes share the unique property of binding specifically to phosphoryl groups. FBPase interacts through its allosteric AMP binding site and PFK binds through its fructose 6-P binding site. This specific binding of both enzymes through these sites result in the inactivation of PFK and the desensitization of FBPase to allosteric inhibition by AMP. In the unbound state PFK may be active and FBPase can be inhibited by AMP. Taken collectively, these binding effects could play a role in the reciprocal regulation of these enzymes during gluconeogenesis in kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mansour, T. E., 1972. Curr. Top. Cell. Regul. 5: 1–46.

    Google Scholar 

  2. Bloxham, D. P. and Lardy, H. A., 1973. In: The Enzymes (Boyer, P. D., ed.), Vol. 8, pp. 239–278, Academic Press, New York.

  3. Uyeda, K., 1979. Adv. Enzymol. Relat. Areas Mol. Biol. 48: 193–228.

    Google Scholar 

  4. Furuya, E. and Uyeda, K., 1980. Proc. Natl. Acad. Sci. U.S.A. 77:5861–5864.

    Google Scholar 

  5. Van Schaftingen, E., Hue, L. and Hers, H. G., 1980. Biochem. J. 192: 897–901.

    Google Scholar 

  6. Uyeda, K., Furuya, E. and Luby, L. J., 1981. J. Biol. Chem. 256:8394–8399.

    Google Scholar 

  7. Van Schaftingen, E. and Hers, H. G., 1981. Proc. Natl. Acad. Sci. U.S.A. 78: 2861–2863.

    Google Scholar 

  8. Masters, C. J., 1981. CRC Crit. Rev. Biochem. 11: 105–143.

    Google Scholar 

  9. Karadsheh, N. S. and Uyeda, K., 1977. J. Biol. Chem. 252: 7418–7420.

    Google Scholar 

  10. Highashi, T., Richards, C. S. and Uyeda, K., 1979. J. Biol. Chem. 254: 9542–9550.

    Google Scholar 

  11. Arnold, H. and Pette, D., 1970. Eur. J. Biochem. 15: 360–366.

    Google Scholar 

  12. Clarke, F. M. and Masters, C. J., 1975. Biochim. Biophys. Acta 381: 37–41.

    Google Scholar 

  13. Kratowich, N. and Mendicino, J., 1974. J. Biol. Chem. 249: 5485–5494.

    Google Scholar 

  14. Allen, M. B. and Blair, J. M., 1972. Biochem. J. 130: 1167–1169.

    Google Scholar 

  15. Mendicino, J., Abou-Issa, H., Medicu, R. and Kratowich, N., 1975. In: Methods Enzymol., Vol. 42, pp. 375–397. Academic Press, New York.

    Google Scholar 

  16. Schachman, H. K., 1959. In: Ultracentrifugation in Biochemistry, Academic Press, New York.

    Google Scholar 

  17. Mendicino, J., Kratowich, N. and Oliver, R. M., 1972. J. Biol. Chem. 241: 6643–6650.

    Google Scholar 

  18. Cohen, R., Girand, B. and Messiah, A., 1967. Biopolymers 5: 203–225.

    Google Scholar 

  19. Taylor, B. L., Barden, R. E. and Utter, M. F., 1972. J. Biol. Chem. 247: 7383–7390.

    Google Scholar 

  20. Abou-Issa, H. and Mendicino, J., 1973. J. Biol. Chem. 248: 685–696.

    Google Scholar 

  21. Travis, J. and Pannell, R., 1973. Clin. Chim. Acta 49: 49–53.

    Google Scholar 

  22. Ramadoss, C. S., Luby, L. J. and Uyeda, K., 1976. Arch. Biochem. Biophys. 175: 487–494.

    Google Scholar 

  23. Cleland, W. W., 1963. Nature 198: 463–466.

    Google Scholar 

  24. Cleland, W. W., 1967. Ann. Rev. Biochem. 36: 77–112.

    Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193: 265–273.

    CAS  PubMed  Google Scholar 

  26. Hanna, R. and Mendicino, J., 1970. J. Biol. Chem. 245: 4031–4037.

    Google Scholar 

  27. Uyeda, K., 1969. Biochemistry 8: 2366–2373.

    Google Scholar 

  28. Setlow, B. and Mansour, T. E., 1972. Biochim. Biophys. Acta 258: 106–112.

    Google Scholar 

  29. Mendicino, J. and Vasarhely, F., 1963. J. Biol. Chem. 240: 3528–3536.

    Google Scholar 

  30. Bohme, H. -J., Kopperschlager, G., Schultz, J. and Hofmann, E., 1972. J. Chromatogr. 69: 209–215.

    Google Scholar 

  31. Stellwagen, E., Cass, R., Thompson, S. T. and Woody, M., 1975. Nature 257: 716–718.

    Google Scholar 

  32. Massey, T. H. and Deal, W. C., Jr., 1973. J. Biol. Chem. 248: 56–62.

    Google Scholar 

  33. Uyeda, K., 1970. J. Biol. Chem. 245: 2268–2275.

    Google Scholar 

  34. Vinnela, E., Salas, M. L. and Sols, A., 1963. Biochem. Biophys. Res. Commun. 12: 140–144.

    Google Scholar 

  35. Layzer, R. B., Rowland, L. P. and Bank, W. J., 1969. J. Biol. Chem. 244: 3823–3831.

    Google Scholar 

  36. Hanson, R. L., Rudolph, F. B. and Lardy, H. A., 1973. J. Biol. Chem. 248: 7852–7859.

    Google Scholar 

  37. Lowry, O. H. and Passonneau, J. V., 1966. J. Biol. Chem. 241:2268–2275.

    Google Scholar 

  38. Brand, I. A. and Soling, H., 1974. J. Biol. Chem. 249: 7824–7831.

    Google Scholar 

  39. Kee, A. and Griffin, C. C., 1972. Arch. Biochem. Biophys. 149: 361–367.

    Google Scholar 

  40. Faupel, R. P., Seitz, H. J., Tarnowski, W., Thiermann, V. and Weiss, C., 1972. Arch. Biochem. Biophys. 148: 509–522.

    Google Scholar 

  41. Mendicino, J., Leibach, F. H. and Reddy, S., 1978. Biochemistry 17: 4662–4668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkar, S., Muniyappa, K., Leibach, F. et al. Evidence for a specific phosphoryl binding site in swine kidney phosphofructokinase. Mol Cell Biochem 62, 77–92 (1984). https://doi.org/10.1007/BF00230080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230080

Keywords

Navigation