Skip to main content
Log in

Effects of fatty acid deficiency on the lipid composition and physical properties of guinea pig rough endoplasmic reticulum

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Twenty-six days of fat deficiency brought about a decrease of linoleic and an increase of oleic acid in rough endoplasmic reticulum (RER) of guinea pig liver. Arachidonic acid was only slightly decreased in some phospholipids whereas eicose-5,8,11-trienoic acid was not enhanced except in phosphatidyl-inositol. All these changes were relevant specifically in phosphatidylinositol molecules and less important in phosphatidylcholine and phosphatidylethanolamine. Fat deficiency did not modify the relative proportion of phospholipids and cholesterol. Therefore, fat deficient guinea pig microsomes are a good model to study the effect of unsaturated fatty acids on membrane properties. Fluorescent anisotropy of RER membranes, lipids and phospholipids labeled with diphenylhexatriene, was increased by the fat deficiency. The most important increase was observed in liposomes of a mixture of RER phosphatidylinositol, phosphatidylserine and sphingomyelin. A small change was found in phosphatidylcholine and phosphatidylethanolamine dispersions at 37°C. The modification of the lipid unsaturation evoked fluorescent anisotropy changes. Temperature-dependent fluorescent polarization curves of RER membranes labeled with trans-parinaric acid did not show inflections in the temperature range from 5 to 45°C but, RER lipids and phospholipids presented a phase separation at about 20°C. This inflection point was not modified by the fat deficient diet. In those liposomes prepared with a mixture of RER phosphatidylinositol, phosphatidylserine and sphingomyelin, the inflection point was produced at about 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castuma CE, Brenner RR: Biochim Biophys Acta 729:9–16, 1983

    Google Scholar 

  2. Towers NR, Raison JK, Kellerman GM, Linnane AW: Biochim Biophys Acta 287:301–311, 1972

    Google Scholar 

  3. Shinitzky, MM, Barenholz Y: Biochim Biophys Acta 515:367–394, 1978

    Google Scholar 

  4. Andrich MP, Vanderkooi JM: Biochemistry 15:1257–1261, 1976

    Google Scholar 

  5. Van Blitterswijk WJ, Van Hoeven RP, Van der Meer BW: Biochim Biophys Acta 644:323–332, 1981

    Google Scholar 

  6. Sklar LA: Mol Cell Biochem 32:169–177, 1980

    Google Scholar 

  7. Reid ME, Briggs GM: J Nutr 51:341–354, 1953

    Google Scholar 

  8. Blobel G, Potter VR: J Mol Biol 28:539–542, 1967

    Google Scholar 

  9. Ramsey JC, Steele WJ: Anal Biochem 92:305–312, 1979

    Google Scholar 

  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: J Biol Chem 193:265–275, 1951

    CAS  PubMed  Google Scholar 

  11. Folch J, Lees M, Sloane-Stanley GH: J Biol Chem 226:497–509, 1957

    CAS  PubMed  Google Scholar 

  12. Huang TC, Chen CP, Wefler V, Raftery J: Anal Chem 33:1405–1406, 1961

    Google Scholar 

  13. Chen PS, Toribara TY, Warner H: Anal Chem 28:1756–1758, 1956

    CAS  Google Scholar 

  14. Blobel G, Potter VR: Biochim Biophys Acta 166:48–53, 1968

    Google Scholar 

  15. Fleck A, Munro HN: Biochim Biophys Acta 55:571–583, 1962

    Google Scholar 

  16. Nutter LP, Privett SO: J Chromatog 35:519–525, 1968

    Google Scholar 

  17. Neskovic NM, Kostic OM: J Chromatog 35:297–303, 1968

    Google Scholar 

  18. Azumi T, McGlynn S: J Chem Phys 37:2413–2420, 1962

    Google Scholar 

  19. Chen RF, Bowman RJ: Science 147:729–732, 1965

    Google Scholar 

  20. Sklar LA, Hudson BS, Simoni RD: Biochemistry 16:819–828, 1977

    Google Scholar 

  21. Adelman MR, Blobel G, Sabatini DD: J Cell Biol 56:191–205, 1973

    Google Scholar 

  22. Brenner RR, Garda H, Gomez Dumm INT de, Pezzano H. In: Holman RT (ed) Progress in Lipid Research. Vol 20, 1981, p 315

  23. Gilmore R, Cohn N, Glaser M. Biochemistry 18:1050–1056, 1979

    Google Scholar 

  24. Fraley RT, Yen GSL, Lucking DR, Kaplan S: J Biol Chem 254:1987–1991, 1979

    Google Scholar 

  25. Moore BM, Lentz BL, Meissner G: Biochemistry 17:5248–5255, 1978

    Google Scholar 

  26. Sudipto Das, Rand RP: Biochem Biophys Res Commun 124:491–496, 1984

    Google Scholar 

  27. Sklar LA, Miljanich GP, Dratz EA: Biochemistry 18:1707–1716, 1979

    Google Scholar 

  28. Stubbs CD, Smith AD: Biochim Biophys Acta 779:89–137, 1984

    Google Scholar 

  29. Brenner RR. In: Holman RT (ed) Progress in Lipid Research. Vol 23, 1984, p 69

  30. Jahnig F: Proc Natl Acad Sci 76:6361–6365, 1979

    Google Scholar 

  31. Poon R, Clark WR: Biochim Biophys Acta 649:58–66, 1981

    Google Scholar 

  32. Poon R, Richards JM, Clark WR: Biochim Biophys Acta 689:230–240, 1981

    Google Scholar 

  33. York DA, Hyslop PA, French R: Biochem Biophys Res Commun 106:1478–1483, 1982

    Google Scholar 

  34. Pugh EL, Kates M, Szabo AG: Chem Phys Lipids 30:55–69, 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is member of the Carrera del Investigador Cientifico, Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulages, J.L., Brenner, R.R. Effects of fatty acid deficiency on the lipid composition and physical properties of guinea pig rough endoplasmic reticulum. Mol Cell Biochem 78, 109–119 (1987). https://doi.org/10.1007/BF00229685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229685

Key words

Navigation