Skip to main content
Log in

Glycosylation is critical for natriuretic peptide receptor-B function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Co-transfection of a truncated natriuretic peptide receptor-B (NPR-B) with the full length receptor results in a decrease of 60–80% in wild-type receptor activity. This reduction correlates with a loss of glycosylation of the full length NPR-B. This effect is dose-dependent, and occurs with no change in the glycosylation of the truncated receptor. Co-transfection of the full length NPR-B with other receptors yields similar results. These data suggest that glycosylation may be crucial for NPR-B function. Cross-linking studies further demonstrate that only fully glycosylated NPR-B receptors are able to bind ligand. Our data therefore argue that carbohydrate modification may be critical for NPR-B receptor ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

as:

amino acids

ANF:

atrial natriuretic factor

ANOVA:

analysis of variance

BS3 :

bis(sulfosuccinimidyl) suberate

BSA:

bovine serum albumin

CNP:

C-type natriuretic peptide

DEAE:

dextran-diethylaminoethyl-dextran

DMEM:

Dulbecco's modified Eagle medium

DMSO:

dimethyl sulfoxide

dNTP:

deoxynucleotide triphosphate

EDTA:

ethylenediamine tetraacetic acid

IBMX:

3-isobutyl-l-methyl-=xanthine

min:

minutes

N-linked:

asparagine-linked

NPR:

natriuretic peptide receptor

nt:

nucleotide

PCR:

polymerase chain reaction

RIA:

radioimmunoassay

RP-HPLC:

reverse phase-high performance liquid chromatography

RP-HPLC:

reverse phase-high performance liquid chromatography

SDS:

sodium dodecyl sulfate

UV:

ultraviolet

References

  1. Jamison R, Canaan-Kuhl S, Pratt R: The natriuretic peptides and their receptors. Am J Kid Dis XX: 519–530, 1992

    Google Scholar 

  2. Levin ER: Natriuretic peptide C-receptor: More than a clearance receptor. Am J Physiol 264 (27): E483-E489, 1993

    Google Scholar 

  3. Drewett JG, Garbers DL: The family of guanylyl cyclase receptors and their ligands. Endo Rev 15 (2): 135–162, 1994

    Google Scholar 

  4. Anand-Srivastava MB, Trachte GJ: Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45 (4): 455–497, 1993

    Google Scholar 

  5. Chinkers M, Garbers D: Signal transduction by guanylyl cyclases. Annu Rev Biochem 60: 553–575, 1991

    Google Scholar 

  6. Schultz S, Singh S, Bellet RA, Singh G, Tubb J, Chin H, Gathers D: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162, 1989

    Google Scholar 

  7. Chang M-S, Lowe D, Lewis M, Hellmiss R, Chen E, Goeddel DV: differential activation by atrial and brain natriuretic peptides of two different receptor guanylyl cyclases. Nature 341: 68–72, 1989

    Google Scholar 

  8. Duda T, Goraczniak RM, Sitaramayya A, Sharma RK: Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylyl cyclase. Biochem 32: 1391–1395, 1993

    Google Scholar 

  9. Lowe D, Chang M-S, Hellmiss R, Chen E, Singh S, Gathers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384, 1989

    Google Scholar 

  10. Chinkers M, Garbers DL, Chang M-S, Lowe D, Chin H, Goeddel DV, Schulz S: A membrane form of guanylyl cyclase is an atrial natriuretic peptide receptor. Nature 38: 78–83, 1989

    Google Scholar 

  11. Fenrick R, Babinski K, McNicoll N, Therrien M, Drouin J, De Léan A: Cloning and functional expression of the bovine natriuretic peptide receptor-B (natriuretic factor R1C subtype). Mol Cell Biochem 137: 173–182, 1994

    Google Scholar 

  12. Pandey KN, Singh S: Molecular cloning and expression of murine guanylyl cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265: 12342–12348, 1990

    Google Scholar 

  13. Garbers DL, Lowe DG: Guanylyl cyclase receptors. J Biol Chem 269 (49): 30741–30744, 1994

    Google Scholar 

  14. Ueno H, Gunn M, Dell K, Tseng A, Williams LA: Truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem 267 (3): 1470–1476, 1992

    Google Scholar 

  15. Ueno H, Colbert H, Escobedo JA, Williams L: Inhibition of PDGF β receptor signal transduction by coexpression of a truncated receptor. Science 252: 844–848, 1991

    Google Scholar 

  16. Kashles O, Yarden Y, Fischer R, Ullrich A, Schlessinger J: A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization. Mol Cell Biol 11: 1454–1463, 1991

    Google Scholar 

  17. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Schenk DB: Atrial natriuretic peptide clearance receptor. J Biol Chem 263: 9395–9401, 1988

    Google Scholar 

  18. Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD: Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79, 1986

    Google Scholar 

  19. Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Carom MG: An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329: 75–79, 1987

    Google Scholar 

  20. Cullen BR: Use of eukaryotic expression technology in the functional analysis of cloned genes. Meth Enzymol. 152: 684–703, 1987

    Google Scholar 

  21. Féthiere J, Meloche S, Nguyen TT, Ong H, De Léan A: Distinct properties of atria] natriuretic factor receptor subpopulations in epithelial and fibroblast cell lines. Mol Pharm 35: 584–592, 1989

    Google Scholar 

  22. Larose L, McNicoll N, Rondeau J-J, Escher E, De Léan A: Photoaffinity labelling of atrial natriuretic factor (ANF)-R1 receptor by underivatized 125I-ANF. Biochem J 267: 379–384, 1990

    Google Scholar 

  23. Rondeau J-J, McNicoll N, Lord C, Larose L, Meloche S, Gagnon J, Ong H, De Léan A: Production of polyclonal antibody to the bovine adrenal atrial natriuretic factor-RI receptor. J Receptor Research 12 (4): 485–505, 1992

    Google Scholar 

  24. De Léan A, Munson PJ, Rodbard D: Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose response curves. Am J Physiol 235: E97-E102, 1978

    Google Scholar 

  25. Bennett B, Bennett G, Vitangcol R, Jewett J, Burnier J, Henzel W, Lowe D: Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. J Biol Chem 266: 23060–23067, 1991

    Google Scholar 

  26. Lowe DG, Fendly BM: Human natriuretic peptide receptor-A guanylyl cyclase. J Biol Chem 267: 21691–21697, 1992

    Google Scholar 

  27. Koller K, Lipari T, Goeddel DV: Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268: 5997–6003, 1993

    Google Scholar 

  28. Chinkers M, Wilson EM: Ligand-independent oligomerization of natriuretic peptide receptors. J Biol Chem 267: 18589–18597, 1992

    Google Scholar 

  29. Wilson EM, Chinkers M: Identification of sequences mediating guanylyl cyclase dimerization. Biochem 34: 4696–4701, 1995

    Google Scholar 

  30. Thompson DK, Garbers DL: Dominant negative mutations of the guanylyl cyclase-A receptor. 270: 425–430, 1995

    Google Scholar 

  31. Lowe DG: Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochem 31: 10421–10425, 1992

    Google Scholar 

  32. Meloche S, Ong H, De Léan A: Functional heterogeneity of atrial natriuretic factor in bovine adrenal zona glomerulosa is explained by an amiloride-sensitive high affinity molecular complex. J Biol Chem 262: 10252–10258, 1987

    Google Scholar 

  33. Rondeau J-J, McNicoll N, Gagnon J, Bouchard N, Ong H, De Léan A: Stiochiometry of the atrial natriuretic factor-R1 receptor complex in the bovine zona glomerulosa. Biochem 34: 2130–2136, 1995

    Google Scholar 

  34. Kornfeld R, Kornfeld S: Assembly of asparagine-linked oligosaccarides. Ann Rev Biochem 54: 631–664, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address for offprints:Department of Pharmacology, University of Montreal, 2900 Edouard Montpetit, Montreal, Quebec, H3C3J7, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenrick, R., McNicoll, N. & De Léan, A. Glycosylation is critical for natriuretic peptide receptor-B function. Mol Cell Biochem 165, 103–109 (1996). https://doi.org/10.1007/BF00229471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229471

Key words

Navigation