Skip to main content
Log in

Regulatory aspects of the colchicine interactions with tubulin

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Limited proteolysis of tubulin with subtilisin results in the cleavage of both tubulin subunits yielding S-tubulin heterodimer and 4 kDa peptide fragments containing the carboxyl-terminal domains of α- and β-polypeptide chains. S-tubulin binds colchicine and the characterization of the binding of colchicine to S-tubulin molecules showed a decreased rate of decay of colchicine binding activity as compared to that of undigested tubulin. However, S-tubulin exhibited a lower colchicine binding constant than tubulin. Peptide fragments resulting from the controlled tryptic proteolysis of both pure tubulin and S-tubulin were purified by filtration chromatography and presented a strong colchicine binding activity with association constants of 4.5×106 and 2.7×106 M−1, respectively. Furthermore, these studies support our initial findings on the localization of the tubulin site for colchicine (Serrano L, Avila J, Maccioni RB: J Biol Chem 259:6607–6611, 1984) and define the colchicine binding domain in a domain of α-subunit from the point of limited tryptic cleavage to the site of subtilisin controlled proteolysis of that tubulin subunit. On the basis of these alterations in the interaction of colchicine upon removal of the C-terminal moiety of tubulin and since no change in the number of binding sites was found after subtilisin digestion, we suggest that the carboxyl-terminal region of tubulin subunits modulates the binding of colchicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ludueña RF: in: Roberts K, Hyams JS (eds). Microtubules. pp 66–115.

  2. Wilson L, Bryan J: Adv Cell Mol Biol 3:21–71, 1974.

    Google Scholar 

  3. Wilson L, Bamburg JR, Mizel SB, Grisham L, Creswell KM: Fed Proc FASEB 33:158–166, 1974.

    Google Scholar 

  4. Sherline P, Leung JT, Kipnis DM: J Biol Chem 250:5481–5486, 1975.

    Google Scholar 

  5. Wiche G, Furtner R: FEBS Lett 116:247–250, 1980.

    Google Scholar 

  6. Nunez J, Fellous A, Francon J, Lennon AM: Proc Natl Acad Sci USA 76:86–90, 1979.

    Google Scholar 

  7. Serrano L, Avila J, Maccioni RB: J Biol Chem 259:6607–6611, 1984.

    Google Scholar 

  8. Serrano L, Avila J, Maccioni RB: Biochemistry 23:4675–4681, 1984.

    Google Scholar 

  9. Serrano L, Montejo E, Hernandez MA, Avila J: Eur J Biochem 153:595–600, 1986.

    Google Scholar 

  10. Maccioni RB, Serrano L, Avila J: Bioessays 2:165–169, 1985.

    Google Scholar 

  11. Serrano L, de la Torre J, Maccioni R, Avila J: Proc Natl Acad Sci USA 81:5989–5993, 1984.

    Google Scholar 

  12. Shelanski ML, Gaskin F, Cantor CR: Proc Natl Acad Sci USA 70:765–768, 1973.

    Google Scholar 

  13. Weingarten M, Lockwood A, Hwo S, Kirschner MW: Proc Natl Acad Sci USA 70:765–768, 1975.

    Google Scholar 

  14. Laemmli UK: Nature 227:680–685, 1970.

    PubMed  Google Scholar 

  15. Fairbanks G, Steck RC, Wallach DF: Biochemistry 10:2606–2617, 1971.

    Google Scholar 

  16. Sherline P, Bodwin CK, Kipnis DM: Anal Biochem 62:400–407, 1974.

    Google Scholar 

  17. Scatchard G: Ann NY Acad Sci USA 51:660–672, 1949.

    Google Scholar 

  18. Maccioni RB, Serrano L, Avila J, Cann J: Eur J Biochem 156:375–381, 1986.

    Google Scholar 

  19. Ponstingl H, Krauhs E, Little M, Kempt T, Hoffer-Warbineck R, Ade W: Cold Spring Harbor Symp Quant Biol 46:191–197, 1982.

    Google Scholar 

  20. Roychowdhuri S, Banerjee A, Bhattacharrya A: Biochem Biophys Res Commun 113:384–390, 1983.

    Google Scholar 

  21. Sacket DL, Bhattacharrya A, Wolff J: J Biol Chem 260:43–45, 1985.

    Google Scholar 

  22. Prakash V, Timasheff SN: J Mol Biol 160:499–516, 1982.

    Google Scholar 

  23. Maccioni RB: Biochem Biophys Res Commun 110:463–469, 1983.

    Google Scholar 

  24. Ringel J, Sternlicht H: Biochemistry 23:5644–5652, 1984.

    Google Scholar 

  25. Little M, Ludueña RF: EMBO J 4:51–56, 1985.

    Google Scholar 

  26. Schmitt H, Atlas D: J Mol Biol 102:743–758, 1976.

    Google Scholar 

  27. Barnes LD, Roberson GM, Aivaliotis MJ, Williams RF: J Cell Biol 95:344a, 1982.

    Google Scholar 

  28. Cabral F, Abraham I, Gottesman MM: Proc Natl Acad Sci USA 78:4388–4392, 1981.

    Google Scholar 

  29. Cabral F, Sobel ME, Gottesman MM: Cell 20:29–34, 1980.

    Google Scholar 

  30. Ludueña RF, Roach MC: Biochemistry 20:4437–4444, 1981.

    Google Scholar 

  31. Keates RAB, Sarangi F, Ling V: Proc Natl Acad Sci USA 78:5638–5642, 1981.

    Google Scholar 

  32. Serrano L, Avila J: Biochem J 230:551–556, 1985.

    Google Scholar 

  33. Raff EC: Dev Biol 58:56–75, 1977.

    Google Scholar 

  34. Wilson L, Meza I: J Cell Biol 58:709–719, 1973.

    Google Scholar 

  35. Wandosell F, Avila J: Cell Differ 16:63–69, 1985.

    Google Scholar 

  36. Kilmartin JV: Biochemistry 20:3629–3633, 1981.

    Google Scholar 

  37. Neff NN, Thomas JH, Frisafi P, Bottstein D: Cell 33:211–219, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, J., Serrano, L. & Maccioni, R.B. Regulatory aspects of the colchicine interactions with tubulin. Mol Cell Biochem 73, 29–36 (1987). https://doi.org/10.1007/BF00229373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229373

Keywords

Navigation