Skip to main content
Log in

Isolation, fractionation and reconstitution of a nuclear extract capable of transcribing ribosomal DNA

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A procedure for preparing a nuclear extract that efficiently transcribes rat rDNA in vitro has been developed. This procedure, which is based on the protocol described by Dignam et al. (Nucl Acids Res 11:1475, 1983), allows the preparation of extract from large or small amounts of material and requires neither ultracentrifugation nor column chromatography. These extracts were found to be more efficient than other transcription systems. Extract prepared as described routinely synthesize 1–2 transcripts per linear template, and could synthesize upto 6 transcripts per linear template at an elongation rate of 2.1 nucleotides per second.

0.3 M NaCl extracts of nuclei contained RNA polymerase I, but did not transcribe rat rDNA in vitro, whereas extract prepared with 0.42 M NaCl did. The 0.42 M NaCl extract of nuclei was fractionated by chromatography on DEAE-Sephadex and heparin-Sepharose. Two activities were identified that were required for accurate in vitro transcription by endogenous RNA polymerase I. One of these activities was required for accurate initiation, and the second inhibited non-specific transcription. The fraction required for accurate initiation by the endogenous RNA polymerase I is that factor which directs species specific transcription, as it also directed the transcription of rat rDNA by nuclear extracts of HeLa cells. Combining that same chromatographic fraction of the 0.42 M NaCl extract with the 0.3 M NaCl extract resulted in specific transcription. These results suggest that a fraction of the RNA polymerase I molecules may exist in a complex with some, or all, of the factors required for transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishima Y, Financsek I, Kominami R, Muramatsu M: Nucl Acids Res 10:6659–6670, 1982.

    Google Scholar 

  2. Samuels M, Fire A, Sharp PA: J Biol Chem 257:14419–14427, 1982.

    Google Scholar 

  3. Miller KA, Tower J, Sollner-Webb B: Mol Cell Biol 5:554–562, 1985.

    Google Scholar 

  4. Sassone-Corsi P, Dougherty JP, Wasylyk B, Chambon P: Proc Natl Acad Sci USA 81:308–312, 1984.

    Google Scholar 

  5. Weil PA, Segall J, Harris B, Ng SY, Roeder RB: J Biol Chem 254:6163–6173, 1979.

    Google Scholar 

  6. Manley JL, Fire A, Cano A, Sharp PA, Gefter ML: Proc Natl Acad Sci USA 77:3855–3859, 1980.

    Google Scholar 

  7. Kurl RN, Jacobs ST: Proc Natl Acad Sci USA 82:1059–1063, 1985.

    Google Scholar 

  8. Dignam J, Lebovitz R, Roeder R: Nucl Acids Res 11:1475 -1489, 1983.

    Google Scholar 

  9. Rothblum LI, Reddy R, Cassidy B: Nucl Acids Res 10:7345–7362, 1982.

    Google Scholar 

  10. Schwartz LB, Sklar VEF, Jaehning JA, Weinmann R, Roeder RG: J Biol Chem 249:5889–5897, 1974.

    Google Scholar 

  11. Bradford M: Analyt Biochem 72:248–250, 1976.

    Article  CAS  PubMed  Google Scholar 

  12. Laemmli UK: Nature 227:680–685, 1970.

    PubMed  Google Scholar 

  13. Yu FL: Biochem Biophys Acta 395:329–336, 1975.

    Google Scholar 

  14. Matsui T, Onishi T, Muramatsu M: Eur J Biochem 71:361–368, 1976.

    Google Scholar 

  15. Tillyer CR, Butterworth PHW: Nucl Acids Res 5:2099–2111, 1978.

    Google Scholar 

  16. Ohlenbusch H, Olivera B, Tuan D, Davidson N: J Mol Biol 25:299–315, 1967.

    Google Scholar 

  17. Cizewski V, Sollner-Webb B: Nucl Acids Res 11:7043–7056, 1983.

    Google Scholar 

  18. Wandell C, Grummt I: Nucl Acids Res 11:3795–3809, 1983.

    Google Scholar 

  19. Miesfeld R, Arnheim N: Mol Cell Biol 4:221–227, 1984.

    Google Scholar 

  20. Slattery E, Dignam JD, Matsui T, Roeder RJ: Biol Chem 258:5955–5959, 1983.

    Google Scholar 

  21. Kurl RN, Jacob ST: Nucl Acids Res 13:89–101, 1985.

    Google Scholar 

  22. Grummt I, Roth E, Paule MR: Nature 296:173–174, 1982.

    Google Scholar 

  23. Miesfeld R, Sollner-Webb B, Croce C, Arnheim N: Mol Cell Biol 4:1306–1312, 1984.

    Google Scholar 

  24. Onishi TC, Berglund C, Reeder RH: Proc Nall Acad Sci USA 81:484–487, 1984.

    Google Scholar 

  25. Kurl RN, Rothblum LI, Jacob ST: Proc Natl Acad Sci USA 81:6672–6675, 1984.

    Google Scholar 

  26. Learned R, Marc, Cordes S, Tjian R: Mol Cell Biol 5:1358–1369, 1985.

    Google Scholar 

  27. Hipskind R, Reeder R: J Biol Chem 255:7896–7906, 1980.

    Google Scholar 

  28. McKnight S, Hipskind R, Reeder R: J Biol Chem 255:7907–7911, 1980.

    Google Scholar 

  29. Karagyozou L, Stoyanova B, Hadjiolov A: Biochem Biophys Acta 607:295–303, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haglund, R.E., Rothblum, L.I. Isolation, fractionation and reconstitution of a nuclear extract capable of transcribing ribosomal DNA. Mol Cell Biochem 73, 11–20 (1987). https://doi.org/10.1007/BF00229371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229371

Keywords

Navigation