Skip to main content
Log in

Effects of dredged spoils on selected microbial activities in lake column simulators

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Four Lake Column Simulators were filled with hypolimnetic water from Lake Ontario and inoculated with algae and fish. Various microbial processes were monitored before and after the addition of dredged spoils. Loading rates of dredged spoils of 0.33, 3.3 or 33 g day−1 were used for each of three columns and one column with no addition of dredged spoils was maintained as a control. The effects of dredged spoils on microbial activities were most pronounced at the highest loading rate. 32P-PO4 was rapidly removed from the control water but the presence of suspended particles from dredged material increased both biological assimilation and physical adsorption processes. The influence of dredged spoils on 32P-PO4 uptake was most pronounced immediately following loading. Dredged spoils also increased 14C-acetate mineralization in water and the effects were again more pronounced immediately following loading. A 3 fold increase in heterotrophic activity during a 1 h incubation at 20°C was observed following addition of a 33 g day−1 loading. Dredged spoils increased the levels of N2-fixation in the columns as indicated by the C2H2-reduction assay procedure. Suspended dredged material reduced light penetration and decreased primary production in the columns. The increased availability of dissolved and particulate organic and inorganic nutrients from continuous addition of dredged spoils was responsible for a general stimulation of microbial activities in the epilimnetic and hypolimnetic regions of the simulated lake columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Analytical Methods Manual: 1974, Inland Waters Directorate, Water Quality Branch, Ottawa, Canada, Thorn Press, Ltd.

    Google Scholar 

  • Angio, F. E. and Obrien, J. O.: 1968, Int. Assoc. Sci. Hydrol., Pub. No. 78, pp. 120.

  • Bray, G. A.: 1960, Anal. Biochem. 1, 279.

    Google Scholar 

  • Brezonik, P. L. and Harper, C. L.: 1969, Science 164, 1277.

    Google Scholar 

  • Brooks, R. H., Jr., Brezonik, P. L., Putman, H. D., and Keirn, M. A.: 1971, Limnol. Oceanogr. 16, 701.

    Google Scholar 

  • Brouzes, R., Mayfield, C. L, and Knowles, R.: 1971, in T. A. Lie and E. G. Mulder (eds.), Plant Soil, Special Volume, 481.

  • Buck, D. H.: 1959, Trans. 21st N. Amer. Wildlife Conf., pp. 249.

  • Cairns, J., Jr.: 1968, Proc. 22nd Industrial Waste Conf., Purdue University Eng. Ext Series No. 129, 16.

  • Cairns, J., Jr. and Lanza, G. R.: 1972, in R. Mitchell (ed.), Water Pollution Microbiology, Wiley, New York. pp. 245.

    Google Scholar 

  • Chemex Labs Ltd.: 1975, ‘Port Stanley Dredging Disposal Study’ Project, 26-02-01.

  • Chu, S. P.: 1942, J. Ecol. 30, 284.

    Google Scholar 

  • Dugdale, R. C., Dugdale, V. A., Neess, J., and Goering, J. J.: 1959, Science 130, 859.

    Google Scholar 

  • Dugdale, V. A. and Dugdale, R. C.: 1962, Limnol. Oceanog. 7, 170.

    Google Scholar 

  • Goering, J. J. and Neess, J. C.: 1964, Limnol. Oceanog. 9, 530.

    Google Scholar 

  • Grimes, D. J.: 1975, Appl. Microbiol. 29, 109.

    Google Scholar 

  • Harrison, M. J., Wright, R. T., and Morita, R. Y.: 1971, Appl. Microbiol. 21, 698.

    Google Scholar 

  • Harter, R. D.: 1968, Sci. Soc. Am. Proc. 32, 514.

    Google Scholar 

  • Hellier, T. R., Jr. and Kornicker, L. S.: 1962, Pub. Inst. Mar. Sci. Tex. 8, 212.

    Google Scholar 

  • Lean, D. R. S.: 1972, Proc. Int. Meet. Humic Substances, Nieuwerssluis Pudoc Wageningen, 159.

  • Lean, D. R. S.: 1973a, Science, 179, 678.

    Google Scholar 

  • Lean, D. R. S.: 1973b, J. Fish. Res. Board Can. 30, 1525.

    Google Scholar 

  • Makin, J. G.: 1961, Pub. Inst. Mar. Sci. Tex. 7, 262.

    Google Scholar 

  • Mayfield, C. I. and Aldworth, R. L.: 1974, Can. J. Microbiol. 20, 877.

    Google Scholar 

  • Nalewajko, C. and Lean, D. R. S.: 1972, J. Phycol. 8, 361.

    Google Scholar 

  • Oswald, W. R.: 1972, J. Environ. Qual. 1, 360.

    Google Scholar 

  • Phillips, J. E.: 1964, in H. Heukelekian and N. C. Dandero (eds.), Principles and Applications in Aquatic Microbiology. Wiley, New York. pp. 61.

    Google Scholar 

  • Pine, M. J. and Barker, H. A.: 1954, J. Bacteriol. 68, 589.

    Google Scholar 

  • Rusness, D. and Burris, R. H.: 1971, Limnol. Oceanog. 16, 808.

    Google Scholar 

  • Sisler, F. D. and Zobell, C. E.: 1951, Science 113, 511.

    Google Scholar 

  • Stall, J. B.: 1972, J. Environ. Qual. 1, 353.

    Google Scholar 

  • Starr, R. C.: 1964, Amer. J. Bot. 51, 1013.

    Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H.: 1968, Arch. Microbiol. 62, 336.

    Google Scholar 

  • Taylor, J. L. and Saloman, C. H.: 1968, in Report of the Bureau of Commercial Fisheries Biological Laboratory, St. Petersburg Beach, Florida, pp. 15.

  • Thorson, G.: 1957, in J. W. Hedgpeth (ed.), Treatise on Marine Ecology and Paleoecology, 1, Ecology, pp. 461.

  • Tolbert, N. E. and Zill, L. P.: 1956, J. Biol. Chem. 222, 895.;

    Google Scholar 

  • Wallen, I. E.: 1951, Bull. Oklahoma Agr. Mech. Col. Biol., Series 48, 27.

    Google Scholar 

  • Watt, W. D.: 1969, Ann. Bot. 33, 427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.A., Mayfield, C.I. & Wong, P.T.S. Effects of dredged spoils on selected microbial activities in lake column simulators. Water Air Soil Pollut 8, 417–428 (1977). https://doi.org/10.1007/BF00228656

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228656

Keywords

Navigation