Skip to main content
Log in

Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide 1. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide family. Only one group of perikarya was stained by both antisera; this group was mainly located in the nucleus dorsomedialis hypothalami and extended to the nucleus paraventricularis and nucleus periventricularis hypothalami. The perikarya were found to project fibers to all regions of the hypothalamus, to the septum, nucleus proprius striae terminalis, nucleus paraventricularis thalami, nucleus centralis thalami, nucleus reuniens, medial, central and basal amygdala, area praetectalis, area tegmentalis ventralis of Tsai, substantia grisea centralis mesencephali, formatio reticularis mesencephali, nucleus centralis superior, locus coeruleus, nuclei parabrachiales, nucleus raphe magnus, A 5-region, vagus-solitarius complex, ventral medulla, nucleus spinalis nervi trigemini, and substantia gelatinosa of the spinal cord. In many brain regions FMRFamide-immunoreactive processes were found in close contact with blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

aspartic acid

F :

phenylalanine

G :

glycine

H :

histidine

L :

leucine

M :

methionine

P :

proline

R :

arginine

V :

valine

W :

tryptophan

Y :

tyrosine

References

  • Adrian TE, Allen JM, Bloom SR, Ghatei MA, Rossor MN, Roberts GW, Crow TJ, Tatemoto K, Polak JM (1983) Neuropeptide Y distribution in human brain. Nature 306:584–586

    Google Scholar 

  • Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM (1983) Neuropeptide Y distribution in the rat brain. Science 221:877–879

    Google Scholar 

  • Bloom FE, Battenberg ELF, Shibasaki T, Benoit R, Ling N, Guillemin R (1980) Localisation of γ-melanocyte stimulating hormone (γ-MSH) immunoreactivity in rat brain and pituitary. Regul Pept 1:205–222

    Google Scholar 

  • Boer HH, Schot LPC, Veenstra JA, Reichelt D (1980) Immunocytochemical identification of neural elements in the central nervous system of a snail, some insects, a fish and a mammal with an antiserum to the molluscan cardio-excitatory tetrapeptide FMRFamide. Cell Tissue Res 213:21–27

    Google Scholar 

  • Card J, Moore RY (1982) Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. J Comp Neurol 206:390–396

    Google Scholar 

  • Card JP, Brecha N, Moore RY (1983) Immunocytochemical localization of avian pancreatic polypeptide-like immunoreactivity in the rat hypothalamus. J Comp Neurol 217:123–136

    Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16

    Google Scholar 

  • Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. J Comp Neurol 169:221–262

    Google Scholar 

  • Cottrell GA, Schot LPC, Dockray GJ (1983) Identification and probable role of a single neurone containing the neuropeptide Helix FMRFamide. Nature 304:638–640

    Google Scholar 

  • Dockray GJ, Williams RG (1983) FMRFamide-like immunoreactivity in rat brain: Development of a radioimmunoassay and its application in studies of distribution and chromatographic properties. Brain Res 266:295–303

    Google Scholar 

  • Dockray GJ, Vaillant C, Williams RG (1981a) New vertebrate brain-gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature 293:656–657

    Google Scholar 

  • Dockray GJ, Vaillant C, Williams RG, Gayton RJ, Osborne NN (1981b) Vertebrate brain-gut peptides related to FMRFamide and Met-enkephalin-Arg6-Phe7. Peptides 2:25–30

    Google Scholar 

  • Dockray GJ, Reeve JR, Shively J, Gayton RJ, Barnard CS (1983) A novel active pentapeptide from chicken brain identified by antibodies to FMFRamide. Nature 305:328–330

    Google Scholar 

  • Drouin J, Goodman HM (1980) Most of the coding region of rat ACTH-β-LPH precursor gene lacks intervening sequences. Nature 288:610–613

    Google Scholar 

  • Gayton RJ (1982) Mammalian neuronal actions of FMRFamide and the structurally related opioid Met-enkephalin-Arg6-Phe7. Nature 298:275–276

    Google Scholar 

  • Gee CE, Chen CC, Roberts JL, Thompson R, Watson SJ (1983) Identification of proopiomelanocortin neurons in rat hypothalamus by in situ cDNA-mRNA hybridization. Nature 306:374–376

    Google Scholar 

  • Greenberg MJ, Price DA (1980) Cardioregulatory peptides in molluscs. In: Bloom FE (ed) Peptides: Integrators of cell and tissue function. Raven Press, New York, pp 107–126

    Google Scholar 

  • Grimmelikhuijzen CJP (1983a) Coexistence of neuropeptides in hydra. Neuroscience 9:837–845

    Google Scholar 

  • Grimmelikhuijzen CJP (1983b) FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates. Histochemistry 78:361–381

    Google Scholar 

  • Grimmelikhuijzen CJP, Dockray GJ, Schot LPC (1982) FMRFamide-like immunoreactivity in the nervous system of hydra. Histochemistry 73:499–508

    CAS  PubMed  Google Scholar 

  • Grimmelikhuijzen CJP, Spencer AN (1984) FMRFamide immuno reactivity in the nervous system of the medusa Polyorchis penicillatus. J Comp Neurol, in press

  • Hökfelt T, Lundberg J, Terenius L, Jansco G, Kimmel J (1981) Avian pancreatic polypeptide (APP) immunoreactive neurons in the spinal cord and spinal trigeminal nucleus. Peptides 2:81–87

    Google Scholar 

  • Hoffmann G (1957) Atlas vom Hirnstamm des Meerschweinchens. I. Teil, Rautenhirn, S. Hirzel Verlag, Leipzig

    Google Scholar 

  • Hosoya Y (1980) The distribution of spinal projection neurons in the hypothalamus of the rat, studied with the HRP method. Exp Brain Res 40:79–87

    Google Scholar 

  • Hunt SP, Emson PC, Gilbert R, Goldstein M, Kimmel JR (1981) Presence of avian pancreatic polypeptide-like immunoreactivity in catecholamine and methionine-enkephalin-containing neurons within the central nervous system. Neurosci Lett 21:125–130

    Google Scholar 

  • Jirikowski G, Erhart G, Grimmelikhuijzen CJP, Triepel J, Patzner RA (1984) FMRFamide-like immunoreactivity in brain and pituitary of the hagfish Eptatretus burgeri (Cyclostomata). Cell Tissue Res in press

  • Kneisley LW, Biber MP, La Vail JH (1978) A study of the origin of brain stem projections to monkey spinal cord using the retrograde transport method. Exp Neurol 60:116–139

    Google Scholar 

  • Koca MF (1984) Afferenzen zum zentralen und dorsalen periaquaeductalen Höhlengrau im Mesencephalon der Ratte: Eine Meerrettichperoxidase-Studie. Thesis, University of Heidelberg

  • Lorén I, Alumets J, Håkanson R, Sundler F (1979) Immunoreactive pancreatic polypeptide (PP) occurs in the central and peripheral nervous system: preliminary immunocytochemical observations. Cell Tissue Res 200:179–186

    Google Scholar 

  • Luiten PGM, Room P (1980) Interrelations between lateral, dorsomedial and ventromedial hypothalamic nuclei in the rat. A HRP Study. Brain Res 190:321–332

    Google Scholar 

  • Lundberg JM, Hökfelt T, Änggård A, Kimmel JR, Goldstein M, Markey K (1980) Coexistence of avian pancreatic polypeptide (APP) immunoreactive substance and catecholamines in some peripheral and central neurons. Acta Physiol Scand 110:107–109

    Google Scholar 

  • Martin R, Frosch D, Kiehling C, Voight KH (1981) Molluscan neuropeptide-like and enkephalin-like material coexist in octopus nerves. Neuropeptides 2:141–150

    Google Scholar 

  • Moore RY, Gustafson EL, Card JP (1984) Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y. Cell Tissue Res 236:41–46

    Google Scholar 

  • Mues G, Fuchs I, Wei ET, Weber E, Evans CJ, Barchas JD, Chang JK (1982) Blood-pressure elevation in rats by the peripheral administration of Tyr-Gly-Gly-Phe-Met-Arg-Phe and the invertebrate neuropeptide Phe-Met-Arg-Phe-NH2. Life Sci 31:2555–2561

    Google Scholar 

  • Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nature 278:423–427

    Google Scholar 

  • Olschowska JA, O'Donohue TL, Jacobowitz DM (1981) The distribution of bovine pancreatic polypeptide-like immunoreactive neurons in rat brain. Peptides 2:309–331

    Google Scholar 

  • Osamura RY, Komatsu N, Watanabe K, Nakai Y, Tanaka I, Imnura H (1982) Immunohistochemical and immunocytochemical localisation of γ-melanocyte stimulating hormone (γ-MSH)-like immunoreactivity in human and rat hypothalamus. Peptides 3:781–787

    Google Scholar 

  • Painter SD, Morley JS, Price DA (1982) Stucture-activity relations of the molluscan neuropeptide FMRFamide on some molluscan muscles. Life Sci 31:2471–2478

    Google Scholar 

  • Price DA, Greenberg MJ (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197:670–671

    Google Scholar 

  • Rössner W (1965) Stereotaktischer Atlas vom Meerschweinchen. Pallas Verlag, Lochlam bei München

    Google Scholar 

  • Schot LPC, Boer HH (1982) Immunocytochemical demonstration of peptidergic cells in the pond snail Lymnea stagnalis with an antiserum to the molluscan cardioactive tetrapeptide FMRFamide. Cell Tissue Res 225:347–354

    Google Scholar 

  • Tribollet E, Dreifuss JJ (1981) Localization of neurons projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neuroscience 6:1315–1328

    Google Scholar 

  • Triepel J, Grimmelikhuijzen CJP (1984) A critical examination of the occurrence of FMRFamide immunoreactivity in the brain of guinea pig and rat. Histochemistry 80:63–71

    Google Scholar 

  • Veenstra JA, Schooneveld H (1984) Immunocytochemical localization of neurons in the nervous system of the Colorado potato beetle with antisera against FMRFamide and bovine pancreatic polypeptide. Cell Tissue Res 235:303–308

    Google Scholar 

  • Vincent SR, Skirboll L, Hökfelt T, Johansson O, Lundberg JM, Elde RP, Terenius L, Kimmel JR (1982) Coexistence of somatostatinand avian pancreatic polypeptide (APP)-like immuno reactivity in some forebrain neurons. Neuroscience 7:439–446

    Google Scholar 

  • Voight KH, Kiehling C, Frosch D, Schiebe M, Martin R (1981) Enkephalin-related peptides: direct action on the octopus heart. Neurosci Lett 27:25–30

    Google Scholar 

  • Weber E, Evans CJ, Samuelson SJ, Barchas JD (1981) Novel peptide neuronal system in rat brain and pituitary. Science 214:1248–1251

    CAS  PubMed  Google Scholar 

  • Wiegand SJ, Price JL (1980) Cells of origin of the afferent fibers to the median eminence in the rat. J Comp Neurol 192:1–19

    Google Scholar 

  • Williams RG, Dockray GJ (1983) Immunocytochemical studies of FMRFamide-like immunoreactivity in rat brain. Brain Res 276:213–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triepel, J., Grimmelikhuijzen, C.J.P. Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide. Cell Tissue Res. 237, 575–586 (1984). https://doi.org/10.1007/BF00228442

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228442

Key words

Navigation