Skip to main content
Log in

Relationship between Ca2+-transport and ATP hydrolytic activities in guinea-pig pancreatic acinar plasma membranes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 μM), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 μM). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ca2+-ATPase:

calcium-activated, magnesium-dependent adenosine triphosphatase

CaM:

calmodulin

CDTA:

trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate

EDTA:

ethylene-diaminetetraacetate

EGTA:

ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetate

NADPH:

reduced form of nicotinamide adenine dinucleotide phosphate

References

  1. Schulz I: Messenger role of calcium in function of pancreatic acinar cells. Am J Physiol 239: G335-G347, 1980

    Google Scholar 

  2. Schulz I, Stolze HH: The exocrine pancreas: The role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Ann Rev Physiol 42: 127–156, 1980

    Google Scholar 

  3. Williams JA: Regulation of pancreatic acinar cell function by intracellular calcium. Am J Physiol 238: G269-G279, 1980

    Google Scholar 

  4. Sung CK, Williams JA: Role of calcium in pancreatic acinar cell secretion. Miner Electrolyte Metab 14: 71–77, 1988

    Google Scholar 

  5. Muallem S, Becker TG, Fimmel CJ: Activation of the endoplasmic reticulum Ca2+ pump of pancreatic acini by Ca2+ mobilizing hormones. Biochem Biophys Res Commun 149: 213–220, 1987

    Google Scholar 

  6. Schulz I, Streb H, Bayerdörffer E, Imamura K: Intracellular messengers in stimulus-secretion coupling of pancreatic acinar cells. J Cardiovasc Pharmacol 8 (Suppl. 8): S91-S96, 1986

    Google Scholar 

  7. Bayerdörffer E, Haase W, Schulz I: Na+/Ca2+ counter-transport in plasma membrane of rat pancreatic acinar cells. J Membr Biol 87: 107–119, 1985

    Google Scholar 

  8. Bayerdörffer E, Eckhardt L, Haase W, Schulz I: Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells. J Membr Biol 84: 45–60, 1985

    Google Scholar 

  9. Kribben A, Tyrakowski T, Schulz I: Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes. Am J Physiol 244: G480-G490, 1983

    Google Scholar 

  10. Ansah T-A, Molla A, Katz S: Ca2+-ATPase activity in pancreatic acinar plasma membranes. Regulation by calmodulin and acidic phospholipids. J Biol Chem 259: 13442–13450, 1984

    Google Scholar 

  11. Schatzmann HJ: The plasma membrane calcium pump. In: H Bader, K Gietzen, J Rosenthal, R Rildel, HU Wolf (eds.) Intracellular Calcium Regulation. Manchester University Press, Manchester, 1986, pp 47–56

    Google Scholar 

  12. Carafoli E, Zurini M, Benaim G: The calcium pump of plasma membrane. In: Calcium and the Cell. Wiley, Chichester, 1986, pp 58–72

    Google Scholar 

  13. Caroni P, Carafoli E: The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem 256: 3263–3270, 1981

    Google Scholar 

  14. Caroni P, Zurini M, Clark A, Carafoli E: Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 258: 7305–7310, 1983

    Google Scholar 

  15. Niggli V, Adunyah ES, Carafoli E: Acid phospholipids in saturated fatty acids and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J Biol Chem 256: 8588–8592, 1981

    Google Scholar 

  16. Schatzmann HJ, Luterbacher S, Stieger J, Wüthrich A: Red blood cell calcium pump and its inhibition by vanadate and lanthanum. J Cardiovasc Pharmacol 8 (Suppl 8): S33-S37, 1986

    Google Scholar 

  17. Ronner P, Gazzotti P, Carafoli E: A lipid requirement for the (Ca2+ + Mg2+)-activated ATPase of erythrocyte membranes. Arch Biochem Biophys 179: 578–583, 1977

    Google Scholar 

  18. Forget G, Heisler S: Calcium-activated ATPase activity in a plasma membrane rich preparation of rat pancreas. Clin Exp Pharmacol Physiol 3: 67–72, 1976

    Google Scholar 

  19. LeBel D, Poirier GG, Phaneuf S, St.-Jean P, Laliberté JF, Beaudoin AR: Characterization and purification of a calcium-sensitive ATP diphosphohydrolase from pig pancreas. J Biol Chem 255: 1227–1233, 1980

    Google Scholar 

  20. Martin SS, Senior AE: Membrane adenosine triphosphatase activities in rat pancreas. Biochim Biophys Acta 602: 401–418, 1980

    Google Scholar 

  21. Williams JA, Korc M, Dormer RL: Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am J Physiol 235: E517-E524, 1978

    Google Scholar 

  22. Svoboda M, Robberecht P, Camus J, Deschodt-Lanckman M, Christophe J: Subcellular distribution and response to gastrointestinal hormones of adenylate cyclase in the rat pancreas. Partial purification of a stable plasma membrane preparation. Eur J Biochem 69: 185–193, 1976

    Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

    Google Scholar 

  24. Goldstein D: Calculation of the concentration of the free cations and cation-ligand complexes in solutions containing multiple divalent-cations and ligands. Biophys J 26: 235–242, 1979

    Google Scholar 

  25. Martell A, Smith R: Critical Stability Constants (ed. 1, New York). Plenum Press, New York, 1974, p

    Google Scholar 

  26. Martell A, Smith R: Critical Stability Constants (ed. 5, New York). Plenum Press, New York, 1982, p

    Google Scholar 

  27. Blostein R: Relationship between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J Biol Chem 243: 1957–1965, 1968

    Google Scholar 

  28. Raess BU, Vincenzi FF: A semi-automated method for the determination of multiple membrane ATPase activities. J Pharmacol Methods 4: 273–283, 1980

    Google Scholar 

  29. Verma AK, Penniston JT: A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions. J Biol Chem 256: 1269–1275, 1981

    Google Scholar 

  30. Pandol SJ, Schoeffield MS, Sachs G, Muallem S: The role of free cytosolic calcium in secretagogues stimulated amylase release from dispersed acini from guinea pig pancreas. J Biol Chem 260: 10081–10086, 1985

    Google Scholar 

  31. Muallem S, Pandol SJ, Beeker TG: Calcium mobilizing hormones activate the plasma membrane Ca2+ pump of pancreatic acinar cells. J Membr Biol 106: 57–69, 1988

    Google Scholar 

  32. Galvan A, Lucas M: Ionic and substrate requirements of the high affinity calcium pumping ATPase in endoplasmic reticulum of pancreas. Int J Biochem 19: 987–993, 1987

    Google Scholar 

  33. Lotersztajn S, Hanoune J, Pecker F: A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes. Dependence on an endogenous protein activator distinct from calmodulin. J Biol Chem 256: 11209–11215, 1981

    Google Scholar 

  34. Pershadsingh HA, McDonald JM: A high affinity calcium-stimulated magnesium-dependent adenosine triphosphatase in rat adipocyte plasma membranes. J Biol Chem 255: 4087–4093, 1980

    Google Scholar 

  35. Lambert M, Christophe J: Characterization of (Mg, Ca)-ATPase activity in rat pancreatic plasma membranes. Eur J Biochem 91: 485–492, 1978

    Google Scholar 

  36. Lin S-H, Fain JN: Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes. J Biol Chem 259: 3016–3020, 1984

    Google Scholar 

  37. Minami J, Penniston JT: Ca2+ uptake by corpus-luteum plasma membranes. Evidence of both a Ca2+-pumping ATPase and a Ca2+-dependent nucleoside triphosphatase. Biochem J 242: 889–894, 1987

    Google Scholar 

  38. Anand-Srivastava MB, Panagia V, Dhalla NS: Properties of Ca2+ or Mg2+ dependent ATPase in rat heart sarcolemma. Adv Myocardiol 3: 359–371, 1982

    Google Scholar 

  39. Zhao D, Dhalla NS: Characterization of rat heart plasma membrane Ca2+/Mg2+ ATPase. Arch Biochem Biophys 263: 281–292, 1988

    Google Scholar 

  40. Murray E, Gorsky JP, Penniston JT: High-affinity Ca2+-stimulated and Mg2+-dependent ATPase from rat osteosarcoma. Biochem Int 6: 527–533, 1983

    Google Scholar 

  41. Parkinson DK, Redde IC: Properties of a Ca2+- and Mg2+-activated ATP-hydrolyzing enzyme in kidney cortex. Biochim Biophys Acta 242: 238–246, 1971

    Google Scholar 

  42. Hamlyn JM, Senior AE: Evidence that Mg2+- or Ca2+-activated adenosine triphosphatase in rat pancreas is a plasma-membrane ecto-enzyme. Biochem J 214: 59–68, 1983

    Google Scholar 

  43. Lin S-H, Russell WE: Two Ca2+-dependent ATPases in rat liver plasma membrane. The previously purified (Ca2+-Mg2+)-ATPase is not a Ca2+-pump but an ecto-ATPase. J Biol Chem 263: 12253–12258, 1988

    Google Scholar 

  44. Tuana BS, Dhalla NS: Purification and characterization of a Ca2+/Mg2+ ecto-ATPase from rat heart sarcolemma. Mol Cell Biochem 81: 75–88, 1988

    Google Scholar 

  45. Gazzotti P, Flura M, Gloor M: The association of calmodulin with subcellular fractions isolated from rat liver. Biochem Biophys Res Commun 127: 358–365, 1985

    Google Scholar 

  46. Pavoine C, Lotersztajn S, Mallat A, Pecker F: The high affinity (Ca2+-Mg2+)-ATPase in liver plasma membrane is a Ca2+ pump. Reconstitution of the purified enzyme into phospholid vesicles. J Biol Chem 262: 5113–5117, 1987

    Google Scholar 

  47. Lin S-H: The rat liver plasma membrane high affinity (Ca2+-Mg2+)-ATPase is not a calcium pump. Comparison with ATP-dependent calcium transporter. J Biol Chem 260: 10976–10980, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahey, R., Bridges, M.A. & Katz, S. Relationship between Ca2+-transport and ATP hydrolytic activities in guinea-pig pancreatic acinar plasma membranes. Mol Cell Biochem 105, 137–147 (1991). https://doi.org/10.1007/BF00227753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227753

Key words

Navigation