Skip to main content
Log in

Phytoalexins of woody plants

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Summary

Phytoalexins accumulated in selected woody plants in response to microbial attack or stress are reviewed and listed with respect to their chemical structure and probable biogenetic origin. The host-pathogen systems from which they have been isolated are described. The review also considers the antimicrobial activity of the phytoalexins to the causal pathogens and other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullaev ZS, Islambekov SY, Karimdzhanov AK, Ismailov AI, Vasileva KV, Gladkikh TA, Metlitskii LV (1981) Inducing the formation of phytoalexins of cotton by metabolites of Verticillium dahliae Kleb. Uzb Biol Zh, pp3–7

  • Abraham K, Daniel M (1988) Phytoalexins and related post-infectional compounds in forest crops of Gujarat. Adv For Res India 1: 191–197

    Google Scholar 

  • Abraham KJ, Daniel M, Sabnis SD (1988) Phytoalexins of Cassia fistula Linn. and Morinda tomentosa Heyne. Natl Acad Sci Lett (India) 11: 101–102

    Google Scholar 

  • Afek U, Sztejnberg A (1986) A Citrus phytoalexin 6,7-dimethoxycoumarin as a defense mechanism against Phytophthora citrophthora and the influence of fosetyl-Al and phosphorous acid on its production. Phytoparasitica 14: 246

    Google Scholar 

  • Afek U, Sztejnberg A (1988) Accumulation of scoparone, a phytoalexins associated with resistance of Citrus to Phytophthora citrophthora. Phytopathology 78: 1678–1682

    Google Scholar 

  • Afek U, Sztejnberg A (1989) Effects of fosetyl-Al and phosphorous acid on scoparone, a phytoalexins associated with resistance of Citrus to Phytophthora citrophthora. Phytopathology 79: 736–739

    Google Scholar 

  • Afek U, Sztejnberg A, Carmely S (1986) 6,7-Dimethoxycoumarin, a Citrus phytoalexins conferring resistance against Phytophthora gummosis. Phytochemistry 25: 1855–1856

    Google Scholar 

  • Altman DW, Stipanovic RD, Mitten DM, Heinstein P (1985) Interaction of cotton tissue culture cells and Verticillium dahliae. In Vitro Cell Dev Biol 21: 659–664

    Google Scholar 

  • Apostol I, Low PS, Heinstein P, Stipanovic RD, Altman DW (1987) Inhibition of elicitor-induced phytoalexin formation in cotton and soybean cells by citrate. Plant Physiol 84: 1276–1280

    Google Scholar 

  • Apostol I, Low PS, Heinstein P (1989) Effect of age of cell suspension cultures on susceptibility to a fungal elicitor. Plant Cell Rep 7: 692–695

    Google Scholar 

  • Arimoto Y, Homma Y (1988) Studies on Citrus melanose and Citrus stem-end rot by Diaporthe citri (Faw.) Wolf. Part 9. Effect of light and temperature on the self-defense reaction of plants. Ann Phytopathol Soc Jpn 54: 282–289

    Google Scholar 

  • Arimoto Y, Homma Y, Ohsawa T (1986) Studies on Citrus melanose and Citrus stem-end rot by Diaporthe citri (Faw.) Wolf. Part 5. Identification of a phytotoxin in melanose spot. Ann Phytopathol Soc Jpn 52: 620–625

    Google Scholar 

  • Avazkhodzhaev MK, Zeltser SS, Adylova AN (1982) Induction of cotton phytoalexins by metabolites of Verticillium dahliae cell walls. Dokl Akad Nauk UzbSSR, pp 49–50

  • Avazkhodzhaev MK, Zeltser SS, Adylova AN (1984) Induction and blocking of phytoalexins formation in cotton plants. Dokl Akad Nauk UzbSSR, pp 49–50

  • Barnes RA, Gerber NN (1955) The antifungal agent from Osage orange wood. J Am Chem Soc 77: 3259–3264

    Google Scholar 

  • Barton GM (1967) Differences in phenolic extracts from healthy Douglas-fir roots and those infected with Poria weirii. Can J Bot 45: 1545–1552

    Google Scholar 

  • Bell AA (1967) Formation of gossypol in infected or chemically irradiated tissues of Gossypium species. Phytopathology 57: 759–764

    Google Scholar 

  • Bell AA (1969) Phytoalexin production and Verticillium wilt resistance in cotton. Phytopathology 59: 1119–1127

    Google Scholar 

  • Bell AA, Presley JT (1969) Heat-inhibited or heat-killed conidia of Verticillium albo-atrum induce disease resistance and phytoalexins synthesis in cotton. Phytopathology 59: 1147–1151

    Google Scholar 

  • Bell AA, Stipanovic RD, Howell CR, Fryxell PA (1975) Antimicrobial terpenoids of Gossypium: hemigossypol, 6-methoxyhemigossypol and 6-desoxyhemigossypol. Phytochemistry 14: 225–231

    Article  CAS  Google Scholar 

  • Bell AA, Mace ME, Stipanovic RD (1986) Biochemistry of cotton (Gossypium) resistance to pathogens. ACS Symp Ser 296: 36–54

    Google Scholar 

  • Blaich R, Bachmann O, Stein U (1982) Biochemical basis of resistance to Botrytis cinerea in grapevine. Bull OEPP 12: 167–170

    Google Scholar 

  • Bokel M, Diyasena MNC, Leslie Gunatilaka AAL, Kraus W, Sotheeswaran S (1988) Canaliculatol, an antifungal resveratrol trimer from Stemonoporus canaliculatus Phytochemistry 27: 377–380

    Google Scholar 

  • Braz Filho R, Diaz DPP, Gottlieb OR (1980) Tetronic acid and diarylpropanes from Iryanthera elliptica. Phytochemistry 19: 455–459

    Google Scholar 

  • Brown AE, Swinburne TR (1971) Benzole acid: an antifungal compound formed in Bramley's seedling apple fruits following infection by Nectria galligena Bres. Physiol Plant Pathol 1: 469–475

    Google Scholar 

  • Burden RS, Kemp MS (1983) (-)-7-Hydroxycalamenene, a phytoalexins from Tilia europea. Phytochemistry 22: 1039–1040

    Google Scholar 

  • Burden RS, Kemp MS (1984) Sesquiterpene phytoalexins from Ulmus glabra. Phytochemistry 23: 383–385

    Google Scholar 

  • Burden RS, Kemp MS, Wiltshire CW, Owen JD (1984) Isolation and structure determination of cotonefuran, an induced antifungal dibenzofuran from Cotoneaster lactea W. W. sm. J Chem Soc Perkin Trans 1: 1445–1448

    Google Scholar 

  • Chen F-C, Lee J-S, Lim Y-M (1983) Biphenyls from the heartwood of Taiwan sassafras. Phytochemistry 22: 616–617

    Google Scholar 

  • Clausen TP, Reichardt PB, Bryant JP, Werner RA, Post K, Frisby K (1989) Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J Chem Ecol 15: 2335–2346

    Google Scholar 

  • Clough JM, Mann IS, Widdowson DA (1987) Transition metal mediated organic synthesis: the synthesis of moracin M. Tetrahedron Lett 28: 2645–2648

    Google Scholar 

  • Coxon DT (1982) Phytoalexins from other families. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Blackie, Glasgow, pp 106–132

    Google Scholar 

  • Creasy LL, Coffee M (1988) Phytoalexin production potential of grape berries. J Am Soc Hortic Sci 113: 230–233

    Google Scholar 

  • Croteau R, Gurkewitz S, Johnson MA, Fisk HJ (1987) Biochemistry of oleoresinosis. Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol 85: 1123–1128

    Google Scholar 

  • Delaveau P, Vidal-Tessier AM (1988) Secondary constituents with biological activity in the wood of some tropical species. Actual Bot, pp 25–36

  • Dercks W, Creasy LL (1989 a) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34: 189–202

    CAS  Google Scholar 

  • Dercks W, Creasy LL (1989 b) Influence of fosetyl-Al on phytoalexins accumulation in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34: 203–213

    Google Scholar 

  • Deshpande VH, Srinivasan R, Rao AYR (1975) Wood phenolics of Morus species. IV. Phenolics of the heartwood of five Morus species. Indian J Chem 13: 453–457

    Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol 41: 339–367

    Article  CAS  Google Scholar 

  • Dobry S, Prusky D, Jakoby B, Goldman A (1987) Induction of antifungal resorcinols in flesh of unripe mango fruits and its relation to latent infection by Alternaria alternata. Physiol Mol Plant Pathol 30: 285–292

    Google Scholar 

  • Dubery IA, Schabort JC (1987) 6,7-Dihydroxycoumarin — a stress metabolite with antifungal activity in γ-irradiated Citrus peel. S Afr Sci 83: 440–441

    Google Scholar 

  • Dubery IA, Holzapfel CW, Kruger GJ, Schabort JC, Van Dyk M (1988) Characterization of a γ-radiation-induced antifungal stress metabolite in Citrus peel. Phytochemistry 27: 2769–2772

    Google Scholar 

  • Duchesne LC (1988) Resistance mechanisms to Dutch elm disease: a review. Nat Can 115: 163–168

    Google Scholar 

  • Duchesne LC, Jeng RS, Hubbes M (1985) Accumulation of phytoalexins in Ulmus americana in response to infection by a nonaggressive and an aggresive strain of Ophiostoma ulmi. Can J Bot 63: 678–680

    Google Scholar 

  • Duchesne LC, Hubbes M, Jeng RS (1986) Mansonone E and F accumulation in Ulmus pumila resistant to Dutch elm disease. Can J For Res 16: 410–412

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1987) The accumulation of plant-produced antimicrobial compounds in response to ectomycorrhizal fungi — a review. Phytoprotection 68: 17–28

    Google Scholar 

  • Duchesne LC, Jeng RS, Hubbes M, Sticklen MB (1990) Accumulation of mansonones E and F in seedlings of Ulmus americana in response to inoculation with Ophiostoma ulmi. Trees 4: 187–190

    Google Scholar 

  • Dumas MT, Strunz GM, Hubbes M, Jeng RS (1983) Isolation and identification of six mansonones from Ulmus americana infected with Ceratocystis ulmi. Experientia 39: 1089–1090

    Google Scholar 

  • Elgersma DM, Overeem JC (1971) The relation of mansonones to resistance against Dutch elm disease and their accumulation, as induced by several agents. Neth J Plant Pathol 77: 168–174

    Google Scholar 

  • Erdtman H, Eriksson G, Norin T (1961) Phenolic biphenyl derivatives from the heartwood of Sorbus aucuparia (L). Acta Chem Scand 15: 1796

    Google Scholar 

  • Essenberg M, Doherty MA, Hamilton BK, Henning VT, Cover EC, McFaul S, Johnson WM (1982) Identification and effects on Xanthomonas campestris pv. malvacearum of two phytoalexins from leaves and cotyledons of resistant cotton. Phytopathology 72: 1349–1356

    Google Scholar 

  • Essenberg M, Pierce M, Sherell JL, Sun TJ, Richardson PE (1985 a) Sesquiterpenoid phytoalexins and resistance of cotton to Xanthomonas campestris pathovar malvacearum. In: Sussex I, Ellingboe A, Crouch M, Malmberg R (eds) Current communications in molecular biology: plant cell/cell interactions. Cold Springer Harbor Laboratory, New York, pp 145–149

    Google Scholar 

  • Essenberg M, Stoessl A, Stothers JB (1985b) The biosynthesis of 2,7-dihydroxycadalene in infected cotton cotyledons: The folding pattern of the farnesol precursor and possible implications for gossypol biosynthesis. J Chem Soc Chem Commun, pp 556–557

  • Essenberg M, Grover PB, Cover E (1990) Accumulation of antibacterial sesquiterpenoids in bacterially inoculated Gossypium leaves and cotyledons. Phytochemistry 29: 3107–3113

    Article  CAS  Google Scholar 

  • Fernandez MI, Pedro JR, Seoane E (1983) Two polyhydroxystilbenes from stems of Phoenix dactylifera. Phytochemistry 22: 2819–2821

    Google Scholar 

  • Franich RA, Carson MJ, Carson SD (1986) Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by Dothistromin and correlation with resistance of Pinus radiata families to Dothistroma pini. Physiol Mol Plant Pathol 28: 267–286

    Google Scholar 

  • Fujita M, Itokawa H, Sashida Y (1973a) Components of Magnolia obovata. II. Components of the methanol extract of the bark. Yakugaku Zasshi 93: 422–428

    Google Scholar 

  • Fujita M, Itokawa H, Sashida Y (1973 b) Components of Magnolia obovata. III. Occurrence of magnolol and honokiol in M. obovata and other allied plants. Yakugaku Zasshi 93: 429–434

    Google Scholar 

  • Garas NA, Waiss AC Jr (1986) Differential accumulation and distribution of antifungal sesquiterpenoids in cotton stems inoculated with Verticillium dahliae. Phytopathology 76: 1011–1017

    Google Scholar 

  • Gautam SP, Malaviya N (1985) Phytoalexin production during infection by Diplocarpon rosii in rose leaves. Proc Natl Acad Sci India Sect B 55: 321–322

    Google Scholar 

  • Gehlert R, Schöppner A, Kindl H (1990) Stilbene synthase from seedlings of Pinus sylvestris: purification and induction in response to fungal infection. Mol Plant-Microbe Interactions 3: 444–449

    Google Scholar 

  • Ghosal S, Chakrabarti DK (1988) Differences in phenolic and steroidal constituents between healthy and infected florets of Mangifera indica. Phytochemistry 27: 1339–1344

    Google Scholar 

  • Ghosal S, Biswas K, Chattopadhyay BK (1978) Differences in the chemical constituents of Mangifera indica, infected with Aspergillus niger and Fusarium moniliferme. Phytochemistry 17: 689–694

    Google Scholar 

  • Giesemann A, Biehl B, Lieberei R (1986) Identification of scopoletin as a phytoalexins of the rubber tree Hevea brasiliensis. J Phytopathol 117: 373–376

    Google Scholar 

  • Gladkikh TA, Vasil'eva KV, Portenko LG, Ryabova IM, Kasyanenko AG (1986) Study of the interactions between physiological races of the wilt causal agent Verticillium dahliae and cotton cultivars and lines differing in their wilt resistance. Akad Nauk SSSR Ser Biol, pp 32–42

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol 40: 347–369

    Google Scholar 

  • Harborne JB (ed) (1988) The Flavonoids — advances in research since 1980. Chapman and Hall, London

    Google Scholar 

  • Hart JH (1981) Role of phytostilbenes in decay and disease resistance. Annu Rev Phytopathol 19: 437–458

    Google Scholar 

  • Hart JH, Hillis WE (1974) Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon. Phytopathology 64: 939–948

    Google Scholar 

  • Hartmann G, Nienhaus F (1974) The isolation of xanthoxylin from the bark of Phytophthora and Hendersonula infected Citrus lemon and its fungitoxic effect. Phytopathol Z 81: 97–113

    Google Scholar 

  • Hashidoko Y, Tahara S, Mizutani J (1989) Antimicrobial sesquiterpene from damaged Rosa rugosa leaves. Phytochemistry 28: 425–430

    Google Scholar 

  • Heinstein PF (1985) Stimulation of sesquiterpene aldehyde formation in Gossypium arboreum cell suspension cultures by conidia of Verticillium dahliae. J Nat Prod 48: 907–915

    Google Scholar 

  • Heinstein PF, Herman DL, Tove SB, Smith FH (1970) Biosynthesis of gossypol: incorporation of mevalonate-2-14C and isoprenyl pyrophosphates. J Biol Chem 245: 4658–4665

    Google Scholar 

  • Heinstein P, Widmaier R, Wegner P, Howe J (1979) Biosynthesis of gossypol. Recent Adv Phytochem 12: 313–337

    Google Scholar 

  • Hemingway RW, McGraw GW, Barras SJ (1977) Polyphenols in Ceratocystis minor infected Pinus taeda: fungal metabolites, phloem and xylem phenols. J Agric Food Chem 25: 717–722

    Google Scholar 

  • Hillis WE, Inoue T (1966) The formation of polyphenols in trees. III. The effect of enzyme inhibitors. Phytochemistry 5: 483–490

    Google Scholar 

  • Hillis WE, Inoue T (1968) The formation of polyphenols in trees. IV. The polyphenols formed in Pinus radiata after Sirex attack. Phytochemistry 7: 13–22

    Google Scholar 

  • Homma Y, Arimoto Y (1988) Studies on Citrus melanose and Citrus stem-end rot by Diaporthe citri Faw. Wolf. Part 8. Distribution of pathogen inhibitory substances in Citrus tissues. Ann Phytopathol Soc Jpn 54: 1–8

    Google Scholar 

  • Hubbes M (1988) Pathogen virulence and host reaction in Dutch elm disease. Nat Can 115: 157–162

    Google Scholar 

  • Hubbes M, Jeng RS (1981) Aggressiveness of Ceratocystis ulmi strains and induction of resistance in Ulmus americana. Eur J For Pathol 11: 257–264

    Google Scholar 

  • Hunter RE, Halloin JM, Veech JA, Carter WW (1978) Terpenoid accumulation in hypocotyls of cotton seedlings during ageing and after infection by Rhizoctonia solani. Phytopathology 68: 347–350

    Google Scholar 

  • Ingham JL (1973) Disease resistance in higher plants. The concept of pre-infectional and post-infectional resistance. Phytopathol Z 78: 314–335

    Google Scholar 

  • Ingham JL (1980) Induced isoflavonoids of Erythrina sandwicensis. Z Naturforsch 35 C: 384–386

    Google Scholar 

  • Ingham JL, Markham KR (1980) Identification of the Erythrina phytoalexins, cristacarpin, and a note on the chirality of other 6a-hydroxypterocarpans. Phytochemistry 19: 1203–1207

    Google Scholar 

  • Jeng RS, Alfenas AC, Hubbes M, Dumas MT (1983) Presence and accumulation of fungitoxic substances against Ceratocystis ulmi in Ulmus americana: possible relation to induced resistance. Eur J For Pathol 13: 239–244

    Google Scholar 

  • Jensen JS, Loekke H (1990) 4-Hydroxyacetophenone and its glucoside picein as chemical indicators for stress in Picea abies. J Plant Dis Prot 97: 328–338

    Google Scholar 

  • Jorgensen E (1961) The formation of pinosylvin and its monomethyl ether in the sapwood of Pinus resinosa Ait. Can J Bot 39: 1765–1772

    Google Scholar 

  • Jorgensen E, Balsillie D (1969) Formation of heartwood phenols in callus tissue cultures of red pine (Pinus resinosa). Can J Bot 47: 1015–1016

    Google Scholar 

  • Kamat VS, Chuo FV, Kubo I, Nakanishi K (1981) Antimicrobial agents from an East African medicinal plant Erythrina abyssinica. Heterocycles 15: 1163–1170

    Google Scholar 

  • Karimdzhanov AK, Ismailov AI, Abdullaev ZS, Islambekov SY, Kamaev FG, Sadykov AS (1976) Structure of gossyvertin — a new phytoalexins of the cotton plant. Khim Prir Soedin, pp 238–242

  • Kemp MS, Burden RS (1984) Isolation and structure determination of γ-pyrufuran, a third induced antifungal dibenzofuran from the wood of Pyrus communis L. infected with Chondrostereum purpureum (Pers ex Fr.) Pouzar. J Chem Soc Perkin Trans, pp 1441–1443

  • Kemp MS, Burden RS (1986) Phytoelexins and stress metabolites in the sapwood of trees. Phytochemistry 25: 1261–1269

    Google Scholar 

  • Kemp MS, Burden RS, Loeffler RST (1983) Isolation, structure determination, and total synthesis of the dibenzofurans α- and β-pyrufuran, new phytoalexins from the wood of Pyrus communis L. J Chem Soc Perkin Trans 1: 2267–2272

    Google Scholar 

  • Kemp MS, Holloway PJ, Burden RS (1985) 3β,19α-Dihydroxy-2-oxours-12-en-28-oic acid: a pentacyclic triterpene induced in the wood of Malus pumila Mill, infected with Chondrostereum purpureum (Pers ex Fr.) Pouzar, and a constituent of the cuticular wax of apple fruits. J Chem Res (S), pp 154–155

  • Khan AJ, Kunesch G, Chuilon S, Ravise A (1985) Structure and biological activity of xanthyletin, a new phytoalexins of Citrus. Fruits 40: 807–811

    Google Scholar 

  • Kindl H (1985) Biosynthesis of stilbenes. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, New York, pp 349–377

    Google Scholar 

  • Kömives T, Casida JE (1983) Acifluorfen increases the leaf content of phytoalexins and stress metabolites in several crops. J Agric Food Chem 31: 751–755

    Google Scholar 

  • Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214: 657–663

    Google Scholar 

  • Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224

    Google Scholar 

  • Langcake P, Pryce RJ (1977 a) The production of resveratrol and the viniferins by grapevines in response to UV-irradiation. Phytochemistry 16: 1193–1196

    Google Scholar 

  • Langcake P, Pryce RJ (1977 b) A new class of phytoalexins from grapevines. Experientia 33: 151–152

    CAS  PubMed  Google Scholar 

  • Langcake P, Pryce RJ (1977c) Oxidative dimerization of 4-hydroxystilbenes in vitro: production of a grapevine phytoalexins mimic. J Chem Soc Chem Commun, pp 208–210

  • Langcake P, Cornford CA, Pryce RJ (1979) Identification of pterostilbene as a phytoalexins from Vitis vinifera leaves. Phytochemistry 18: 1025–1027

    Google Scholar 

  • Lee SM, Garas NA, Waiss AC Jr (1986) High-performance liquid chromatographic determination of sesquiterpenoid stress metabolites in Verticillium dahliae infected cotton stele. J Agric Food Chem 34: 490–493

    Google Scholar 

  • Lins AP, Ribeiro MNDeS, Gottlieb OR, Gottlieb HE (1982) Gnetins: resveratrol oligomers from Gnetum species. J Nat Prod 45: 754–761

    Google Scholar 

  • Liyanage NIS, Yapa PAJ, Liyanage AdeS, Peries OS (1981) Production of antitungal compounds in Hevea pods in response to infection by Phytophthora meadii. J Rubber Res Inst Sri Lanka 58: 37–45

    Google Scholar 

  • Mace ME (1983) Elicitation of accumulation of terpenoid aldehyde phytoalexins in Verticillium dahliae-infected cotton. New Phytol 95: 115–119

    Google Scholar 

  • Mace ME, Bell AA, Stipanovic RD (1974) Histochemistry and isolation of gossypol and related terpenoids in roots of cotton seedlings. Phytopathology 64: 1297–1302

    Google Scholar 

  • Mace ME, Stipanovic RD, Bell AA (1985) Toxicity and role of terpenoid phytoalexins in Verticillium wilt resistance in cotton Gossypium barbadense cultivar seabrook-sea-island. Physiol Plant Pathol 26: 209–218

    Google Scholar 

  • Mace ME, Stipanovic RD, Bell AA (1989) Histochemical localization of desoxyhemigossypol, a phytoalexins in Verticillium dahliae-infected cotton stems. New Phytol 111: 229–232

    Google Scholar 

  • Marini-Bettolo GB, Casinovi CG, Galeffi C (1965) A new class of quinones: sesquiterpenoid quinones of Mansonia altissima Chev. Tetrahedron Lett, pp 4857–4864

  • Masciadri R, Angst W, Arigoni D (1985) A revised scheme for the biosynthesis of gossypol. J Chem Soc Chem Comm, p 1573

  • Matern U, Kneusel RE (1988) Phenolic compounds in plant disease resistance. Phytoparasitica 16: 153–170

    Google Scholar 

  • Matsuyama S, Kuwahara Y, Suzuki T (1991) A new 2-arylbenzofuran, ω-hydroxymoracin N, from Mulberry leaves. Agric Biol Chem 55: 1409–1410

    Google Scholar 

  • Miller RH, Berryman AA, Ryan CA (1986) Biotic elicitors of defense reactions in lodgepole pine. Phytochemistry 25: 611–612

    Google Scholar 

  • Mitscher LA, Ward JA, Drake S, Rao GS (1984) Antimicrobial agents from higher plants. Erycristagallin, a new pterocarpene from the roots of the Bolivian coral tree, Erythrina crista-galli. Heterocycles 22: 1673–1675

    Google Scholar 

  • Mitscher LA, Gollapudi SR, Gerlach DC, Drake SD, Veliz EA, Ward JA (1988) Erycristin, a new antimicrobial pterocarpan from Erythrina crista-galli. Phytochemistry 27: 381–385

    Google Scholar 

  • Miyakado M, Watanabe K, Ohno N, Nonaka F, Morita A (1985) Isolation and structural determination of eriobofuran a new dibenzofuran phytoalexins from leaves of loquat Eriobotrya japonica. J Pestic Sci 10: 101–106

    Google Scholar 

  • Morgham AT, Richardson PE, Essenberg M, Cover EC (1988) Effects of continuous dark upon ultrastructure, bacterial populations and accumulation of phytoalexins during interactions between Xanthomonas campestris pv. malvacearum and bacterial blight susceptible and resistant cotton. Physiol Mol Plant Pathol 32: 141–162

    Google Scholar 

  • Morita A, Nonaka F, Makizumi K (1983) Relation between the multiplication of Pseudomonas syringae pathovar eriobotryae and production of aucuparin in the loquat leaf. Ann Phytopathol Soc Jpn 49: 587–592

    Google Scholar 

  • Musaev D, Avazkhodzhaev MK, Zeltser SS, Adylova A, Bykova E, Lev S (1987) Phytoalexin formation in callus culture. Khlopkovodstvo, pp 45–47

  • Musumeci MR, Oliveira AR (1975) Accumulation of phenols and phytoalexins in Citrus tissues inoculated with Phytophthora citrophthora. Summa Phytopathol 1: 275–282

    Google Scholar 

  • Musumeci MR, Oliveira AR (1976) Part 2. Accumulation of phenols and phytoalexins in Citrus tissues following inoculation with Phytophthora citrophthora. Summa Phytopathol 2: 27–31

    Google Scholar 

  • Nakajima K, Taguchi H, Endo T, Yosioka I (1978) The constituents of Scirpus fluviatilis (Torr.) A Gray. I. The structure of two new hydroxystilbene dimers, scirpusin A and B. Chem Pharm Bull 26: 3050–3057

    Google Scholar 

  • Noble JP, Drysdale RB (1983) The role of benzoic acid and phenolic compounds in latency in fruits of two apple cultivars infected with Pezicula malicorticis or Nectria galligena Physiol Plant Pathol 23: 207–216

    Google Scholar 

  • Nomura T (1982) Constituents of the root bark of mulberry tree. Kagaku No Ryoiki 36: 596–605

    Google Scholar 

  • Nonaka F, Makizumi K, Morita A (1982) Antimicrobial activity of the phytoalexins, aucuparin, of loquat plant. Bull Fac Agric Saga Univ 53: 27–36

    Google Scholar 

  • Osswald WF, Zieboll S, Schuetz W, FM J, Elstner EF (1987) p-Hydroxyacetophenone a fungitoxic compound in spruce needles. Z Pflanzenkr Pflanzenschutz 94: 572–577

    Google Scholar 

  • Ota T (1983) Production of phytoalexins-like substances in the Citrus leaves inoculated with a bacterium (Pseudomonas sp.) antagonistic against Xanthomonas campestris pv. citri. Ann Phytopathol Soc Jpn 49: 676–682

    Google Scholar 

  • Overeem JC, Elgersma DM (1970) Accumulation of mansonones E and F in Ulmus hollandica infected with Ceratocystis ulmi. Phytochemistry 9: 1949–1952

    Google Scholar 

  • Paxton JD (1981) Phytoalexins — a working redefinition. Phytopathol Z 101: 106–109

    Google Scholar 

  • Pearce RB (1987) Antimicrobial defenses in secondary tissues of woody plants. Symp Br Mycol Soc 13: 219–238

    Google Scholar 

  • Pezet R, Pont V (1988) Identification of pterostilbene in grape berries of Vitis vinifera. Plant Physiol Biochem 26: 603–608

    Google Scholar 

  • Pierce M, Essenberg M (1987) Localization of phytoalexins in fluorescent mesophyll cells isolated from bacterial blight-infected cotton cotyledons and separated from cells by fluorescence-activated cell sorting. Physiol Mol Plant Pathol 31: 273–290

    Google Scholar 

  • Portenko LG, Ryabova IM, Azizova ZS (1985) Induction of phytoalexins in cross resistance in cotton verticilliosis pathogen. Izv Akad Nauk Tadzh UzbSSR, Old Biol Nauk, pp 30–33

  • Powell RG, Bajaj R, McLaughlin JL (1987) Bioactive stilbenes of Scirpus maritimus. J Nat Prod 50: 293–296

    Google Scholar 

  • Proctor RH, Smally EB (1988) Localized accumulation of mansonones E and F in elms following inoculation with Ophiostoma ulmi. Can J Plant Pathol 10: 371

    Google Scholar 

  • Pryce RJ, Langcake P (1977) α-Viniferin: an antifungal resveratrol trimer from grapevines. Phytochemistry 16: 1452–1454

    Google Scholar 

  • Rennerfelt E (1945) The influence of the phenolic compounds in the heartwood of Scots pine on the growth of some decay fungi in nutrient solution. Sven Bot Tidskr 39: 311–318

    Google Scholar 

  • Rennerfelt E, Nacht G (1955) The fungicidal activity of some constituents from heartwood of conifers. Sven Bot Tidskr 49: 419–432

    Google Scholar 

  • Riov J (1971) 6,7-Dimethoxycoumarin in the peel of gamma-irradiated grapefruit. Phytochemistry 10: 1923

    Google Scholar 

  • Rojas MG, Stipanovic RD, Williams HJ, Vinson SB (1989) A method for the preparation of labeled gossypol by incorporation of 14C acetate. J Labelled Compd 27: 995–998

    Google Scholar 

  • Ronald RC, Wheeler CJ (1984) Synthesis of the simple flavonoid broussonin A. J Org Chem 49: 1658–1660

    Google Scholar 

  • Rowe JW, Toda JK (1969) Absolute configuration at C-4 of calamenene, 7-hydroxycalamenenal and the new naturally occurring sesquiterpene, 7-hydroxycalamenene. Chem Ind, pp 922–923

  • Rowe JW, Seikel MD, Roy DN, Jorgensen E (1972) Chemotaxonomy of Ulmus. Phytochemistry 11: 2513–2517

    Google Scholar 

  • Rudioff E von, Jorgensen E (1963) The biosynthesis of pinosylvin in the sapwood of Pinus resinosa Ait. Phytochemistry 2: 297–304

    Google Scholar 

  • Sadykov AS, Metlitskii LV, Karimdzhanov AK, Ismailov AI, Mukhamedova RA, Avazkhodzhaev MKH, Kamaev FG (1974) Isohemigossypol — the phytoalexins of the cotton plant. Dokl Akad Nauk SSSR 218: 1472–1475

    Google Scholar 

  • Schultz TP, Hubbard TF Jr, Jin L, Fisher TH, Nicholas DD (1990) Role of stilbenes in the natural durability of wood: fungicidal structure-activity relationships. Phytochemistry 29: 1501–1507

    Article  CAS  Google Scholar 

  • Seng JM, Saindrenan P, Bompeix G (1985) Induction of Nectria galligena mutants resistant to benzoic acid and study of their aggressiveness towards immature apples. J Gen Microbiol 131: 1863–1866

    Google Scholar 

  • Shain L (1967) Resistance of sapwood in stems of Loblolly pine to infection by Fomes annosus. Phytopathology 57: 1034–1045

    Google Scholar 

  • Shain L, Miller JB (1982) Pinocembrin: an antifungal compound secreted by leaf glands of eastern cottonwood. Phytopathology 72: 877–880

    Google Scholar 

  • Shirata A (1981) Mechanism of resistance in mulberry shoots to fungal disease. Shokubutsu Boeki 35: 505–510

    Google Scholar 

  • Shirata A, Takahashi K (1978) Detection of antifungal and -bacterial substances in shoot epidermis of mulberry and arboreal plants. Bull Ser Exp Stn 27: 637–646

    Google Scholar 

  • Shirata A, Takahashi K (1982) Detection and production of antimicrobial substances in leaves of mulberry and other Moraceae tree plants. Bull Ser Exp Stn 28: 707–718

    Google Scholar 

  • Shirata A, Takahashi K, Tomiyama K (1978 a) Antifungal substances in infected shoots of arboreal plants. Ann Phytopathol Soc Jpn 44: 340–343

    Google Scholar 

  • Shirata A, Takahashi K, Takasugi MN, Nagao S, Masamune T (1978 b) Antifungal and antibacterial activities of phytoalexins moracin A and moracin B isolated from mulberry. Bull Ser Exp Stn 27: 647–659

    Google Scholar 

  • Shirata A, Takahashi K, Takasugi MN, Anetai M, Masamune T (1982 a) Production of phytoalexins in shoot cortex of paper mulberry and their antimicrobial spectra. Bull Ser Exp Stn 28: 781–792

    Google Scholar 

  • Shirata A, Takahashi K, Takasugi MN, Shigemitsu IS, Ueno S, Munoz L, Masamune T (1982 b) Antimicrobial spectra of the compounds from mulberry Morus alba. Bull Ser Exp Stn 28: 793–806

    Google Scholar 

  • Shirata A, Suzuki Y, Goto M (1983) Production of antibacterial substances in Citrus leaves induced by inoculation of Erwinia carotovora subsp. carotovora. Nogyo Gijutsu Kenkyusho Hokoku C 38: 131–138

    Google Scholar 

  • Shrimpton DM (1973) Extractives associated with wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Can J Bot 51: 527–534

    Google Scholar 

  • Sotheeswaran S, Sultanbawa MUS, Surendrakumar S, Belasubramaniam S, Bladon P (1985) Polyphenols from dipterocarp species. Vaticaffinol and ɛ-viniferin. J Chem Soc Perkin Trans 1: 159–162

    Google Scholar 

  • Sotheeswaran S, Diyasena MNC, Gunatilaka AAL, Bokel M, Kraus W (1987) Further evidence for the structure of vaticaffinol and revision of its stereochemistry. Phytochemistry 26: 1505–1507

    Google Scholar 

  • Stipanovic RD, Bell AA, Howell RD (1975 a) Naphthofuran precursors of sesquiterpenoid aldehydes in diseased Gossypium. Phytochemistry 14: 1809–1811

    Google Scholar 

  • Stipanovic RD, Bell AA, Mace ME, Howell CR (1975 b) Antimicrobial terpenoids of Gossypium: 6-methoxygossypol and 6,6′-dimethoxygossypol. Phytochemistry 14: 1077–1081

    Google Scholar 

  • Stipanovic RD, Wakelyn PJ, Bell AA (1975 c) Lacinilene C, a revised structure, and lacinilene C7-methyl ether from Gossypium bracts. Phytochemistry 14: 1041–1043

    Google Scholar 

  • Stipanovic RD, Greenblatt GA, Beier RC, Bell AA (1981) 2-Hydroxy-7-methoxycadalene. The precursor of lacinilene C7-methyl-ether in Gossypium. Phytochemistry 20: 729–730

    Google Scholar 

  • Stipanovic RD, Stoessl A, Stothers JB, Altman DW, Bell AA, Heinstein P (1986) The stereochemistry of the biosynthetic precursor of gossypol. J Chem Soc Chem Commun, p 100

  • Stipanovic RD, Mace ME, Altman DW, Bell AA (1988) Chemical and anatomical response in Gossypium spp. challenged by Verticillium dahliae. ACS Symp Ser 380: 262–272

    Google Scholar 

  • Stoessl A (1983) Secondary plant metabolites in preinfectional and postinfectional resistance. In: Bailey J, Deverall B (eds) The dynamics of host defence. Academic Press, New York, pp 71–122

    Google Scholar 

  • Sun TJ, Essenberg M, Melcher U (1989) Photoactivated DNA nicking, enzyme inactivation and bacterial inhibition by sesquiterpenoid phytoalexins from cotton. Mol Plant-Microbe Interact 2: 139–147

    Google Scholar 

  • Sutton DC, Gillan FT, Susic M (1985) Naphthofuranone phytoalexins from the gray mangrove Avicennia marina. Phytochemistry 24: 2877–2880

    Google Scholar 

  • Takahashi K, Shirata A (1982) Production of antifungal substances in mulberry. Jpn Agric Res Q 16: 119–124

    Google Scholar 

  • Takasugi M, Katui N (1986) A biphenyl phytoalexins from Cercidiphyllum japonicum. Phytochemistry 25: 2751–2752

    Google Scholar 

  • Takasugi M, Munoz L, Masamune T, Shirata A, Takahashi K (1978a) Stilbene phytoalexins from diseased mulberry. Chem Lett, pp 1241–1242

  • Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K (1978b) Structure of moracin A and B, new phytoalexins from diseased mulberry. Tetrahedron Lett, pp 797–798

  • Takasugi M, Nagao S, Ueno S, Masamune T, Shirata A, Takahashi K (1978c) Moracin C and D, new phytoalexins from diseased mulberry. Chem Lett, pp 1239–1240

  • Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K (1979a) Structures of moracins E, F, G, and H, new pyhtoalexins fom diseased mulberry. Tetrahedron Lett, pp 4675–4678

  • Takasugi M, Nagao S, Munoz L, Ishikawa S, Masamune T, Shirata A, Takahashi K (1979 b) The structure of phytoalexins produced in diseased mulberry. Koen Yoshihu — Tennen Yuki Kagobutsu Toronkai 22: 275–282

    Google Scholar 

  • Takasugi M, Anetai M, Masamune T, Shirata A, Takahashi K (1980a) Studies on phytoalexins of the Moraceae. 5. Broussonins A and B, new phytoalexins from diseased paper mulberry. Chem Lett, pp 339–340

  • Takasugi M, Ishikawa S, Nagao S, Masamune T, Shirata A, Takahashi K (1980a). Studies on phytoalexins of the Moraceae. 8. Albanins F and G, natural Diels-Alder adducts from mulberry. Chem Lett, pp 1577–1580

  • Takasugi M, Kumagai Y, Nagao S, Masamune T, Shirata A, Takahashi K (1980c) Studies on phytoalexins of the Moraceae. 6. The co-occurrence of flavan and 1,3-diphenylpropane derivatives in wounded paper mulberry. Chem Lett, pp 1459–1460

  • Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K (1980d) Chalcomoracin, a natural Diels-Alder adduct from diseased mulberry. Chem Lett, pp 1573–1576

  • Takasugi M, Ishikawa S, Masamune T (1982a) Albafurans A and B, geranyl 2-phenylbenzofurans from mulberry. Chem Lett, pp 1221–1222

  • Takasugi M, Ishikawa S, Nagao S, Masamune T (1982b) Albafuran C, a natural Diels-Alder adduct of a dehydroprenyl-2-phenylbenzofuran with a chalcone from mulberry. Chem Lett, pp 1223–1225

  • Takasugi M, Nagao S, Masamune T (1982c) Structure of dimoracin, a new natural Diels-Alder adduct from diseased mulberry. Chem Lett, pp 1217–1221

  • Takasugi M, Niino N, Anetai M, Masamune T, Shirata A, Takahashi K (1984a) Studies on phytoalexins of the Moraceae. 14. Structure of two stress metabolites, spirobroussonin A and B from diseased paper mulberry. Chem Lett, pp 693–694

  • Takasugi M, Niino N, Nagao S, Anetai M, Masamune T, Shirata A, Takahashi K (1984b) Studies on the phytoalexins of the Moraceae. 13. Eight minor phytoalexins from diseased paper mulberry. Chem Lett, pp 689–692

  • Tanaka N, Yasue M, Imamura H (1966) The quinonoid pigments of Mansonia altissima wood. Tetrahedron Lett, pp 2767–2773

  • Thompson NJ (1987) Host plant resistance in cotton. J Aust Inst Agric Sci 53: 262–270

    Google Scholar 

  • Threlfall DR, Whitehead IM (1988) The use of biotic and abiotic elicitors to induce the formation of secondary plant products in cell suspension cultures of solanaceous plants. Biochem Soc Trans 16: 71–75

    Google Scholar 

  • Tyuterev SL, Stepanichenko NN, Ten LN, Navrezova NS (1989) Pseudofungizides: screening, mechanism and application to plant protection. Prikl Biokhim Mikrobiol 25: 405–406

    Google Scholar 

  • Ueda S, Nomura T, Fukai T, Matsumoto J (1982) Kuwanon J a new Diels-Alder adduct and chalcomoracin from callus culture of Morus alba. Chem Pharm Bull 30: 3042–3045

    Google Scholar 

  • Van der Heijden R, Verheij ER, Schripsema J, Baerheim-Svendsen A, Verpoorte R, Harkes PAA (1988) Induction of triterpene biosynthesis by elicitors in suspension cultures of Tabernaemontana species. Plant Cell Rep 7: 51–54

    Google Scholar 

  • Van der Heijden R, Threlfall DR, Verpoorte R, Whitehead IM (1989) Regulation and enzymology of pentacyclic triterpenoid phytoalexins biosynthesis in cell suspension cultures of Tabernaemontana divariata. Phytochemistry 28: 2981–2988

    Google Scholar 

  • Vernenghi A, Ramiandrasoa F, Chuilon S, Ravise A (1987) Phytoalexines des Citrus: seseline. Proprietes inhibitrices et modulation de synthese. Fruits 42: 103–111

    Google Scholar 

  • Vu B, Mezey-Vandor G, Nogradi M (1984) A practical method for the preparation of 2-aryl-benzofurans and the synthesis of moracin A and moracin B. Liebigs Ann Chem, pp 734–741

  • Watanabe K, Ishiguri Y, Nonaka F, Morita A (1982) Isolation and identification of aucuparin as a phytoalexins from Eriobotrya japonica L. Agric Biol Chem 46: 567–568

    Google Scholar 

  • Westfelt L (1966) High-boiling neutral constituents from the wood of Pinus sylvestris L. Acta Chem Scand 20: 2829–2840

    Google Scholar 

  • Wijnsma R, Go JTKA, Van Weerden IN, Harkes PAA, Verpoorte R, Baerheim-Svendsen A (1985) Antraquinones as phytoalexins in cell and tissue cultures of Cinchona sp. Plant Cell Rep 4: 241–244

    Google Scholar 

  • Wijnsma R, Go JS, Verpoorte R, Van der Heijden R, Harkes PAA, Baerheim-Svendsen A (1986 a) Induction of anthraquinone biosynthesis by biotic elicitors in cell suspension cultures of Cinchona ledgeriana. Acta Bot Neerl 35: 42–43

    Google Scholar 

  • Wijnsma R, Van Weerden IN, Verpoorte R, Harkes PAA, Lugt CB, Scheffer JJC, Baerheim-Svendsen A (1986 b) Anthraquinones in Cinchona ledgeriana bark infected with Phytophthora cinnamoni. Planta Med 52: 211–212

    Google Scholar 

  • Yang D, Jeng RS, Hubbes M (1989) Mansonone accumulation in elm callus induced by elicitors of Ophiostoma ulmi, and general properties of elicitors. Can J Bot 67: 3490–3497

    Google Scholar 

  • Zaki AI, Keen NT, Erwin DC (1972 a) Implication of vergosin and hemigossypol in the resistance of cotton to Verticillium albo-atrum. Phytopathology 62: 1402–1406

    Google Scholar 

  • Zaki AI, Keen NT, Sims JJ, Erwin DC (1972 b) Vergosin and hemigossypol, antifungal compounds produced in cotton plants inoculated with Verticillium albo-atrum. Phytopathology 62: 1398–1401

    Google Scholar 

  • Zeringue HJ (1984) The accumulation of five fluorescent compounds in the cotton leaf induced by cell-free extracts of Aspergillus flavus. Phytochemistry 23: 2501–2503

    Google Scholar 

  • Zeringue HJ (1987) A possible relationship between phytoalexins production in the cotton leaf and a phytotoxic response. Phytochemistry 26: 975–978

    Google Scholar 

  • Zeringue HJ (1988) Production of carpel wall phytoalexins in the developing cotton boll. Phytochemistry 27: 3429–3432

    Google Scholar 

  • Zielke H, Sonnenbichler J (1990) Natural occurrence of 3,3′-4,4′-tetramethoxy-1,1′-biphenyl in leaves of stressed European beech. Naturwissenschaften 77: 384–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottstein, D., Gross, D. Phytoalexins of woody plants. Trees 6, 55–68 (1992). https://doi.org/10.1007/BF00226582

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226582

Key words

Navigation