Skip to main content
Log in

On the role of peroxisomes in the metabolism of lipids — evidence from studies on mammalian tissues in vivo

  • Review
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Recent investigations into the role of peroxisomes in mammalian lipid metabolism have employed double isotope methodologies to examine the influence of peroxisomal agents on lipid turnover in the liver and extra hepatic tissues of the living animal.

The action of these agents, all of which caused extensive changes in the flux of lipid metabolism in the treated animals, may best be viewed in relation to their effects on the common pathway of fatty acid oxidation in peroxisomes.

Clofibrate, for example, acts through induction of peroxisomal oxidases and catalase; glycolate and ethanol through activation of this pathway; and aminotriazole and allylisopropylacetamide through inhibition of the catalase step in the sequence.

The data from these studies provide support for the concept of an important contributory and regulatory role of peroxisomes in relation to the overall balance of lipid metabolism, and emphasize that these organelles play a significant role in the oxidation of common fatty acids, as well as a potential for the elimination of fatty acids that are poorly oxidized by mitochondria.

Additionally, the data raise intriguing questions on the extension of peroxisomal influence to include phospholipid metabolism and the substantial degree of inter-tissue communication which is involved in the balance of lipid metabolism in the whole animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lazarow PB, de Duve C: Proc Natl Acad Sci USA 73:2043–2046, 1976.

    Google Scholar 

  2. Hashimoto T: Ann NY Acad Sci 386:5–12, 1982.

    Google Scholar 

  3. Kondrup J, Lazarow PB: Ann NY Acad Sci 386:404–405, 1982.

    Google Scholar 

  4. Mannaerts GP, Debeer LJ, Thomas J, de Schepper PJ: J Biol Chem 254:4585–4595, 1979.

    Google Scholar 

  5. Osmundsen J: Ann NY Acad Sci 386:13–27, 1982.

    Google Scholar 

  6. Cannon B, Alexson S, Nedergaard J: Ann NY Acad Sci 386:40–61, 1982.

    Google Scholar 

  7. Crane DI, Holmes RS, Masters CJ: Biochem Biophys Res Commun 93:258–263, 1980.

    Google Scholar 

  8. Crane DI, Holmes RS, Masters CJ: Biochem Int 1:133–138, 1980.

    Google Scholar 

  9. Crane DI, Holmes RS, Masters CJ: Int J Biochem 13:395–399, 1981.

    Google Scholar 

  10. Lee TC, Snyder F: Biochim Biophys Acta 291:71–82, 1973.

    Google Scholar 

  11. Arias IM, Doyle D, Schmike RT: J Biol Chem 244:3303–3315, 1969.

    Google Scholar 

  12. Glass RD, Doyle D: J Biol Chem 247:5234–5242, 1972.

    Google Scholar 

  13. Don M, Masters CJ: Int J Biochem 7:215–220, 1976.

    Google Scholar 

  14. Grinna LS: Mech Ageing Devel 6:453–459, 1977.

    Google Scholar 

  15. Van Golde LMG, Van Den Bergh SG: In: Snyder F (ed), Lipid Metabolism in Mammals, Vol 1. Plenum Press, New York and London, 1977, pp 35–149.

    Google Scholar 

  16. Brophy PJ, Burbach P, Nelemans AS, Westerman J, Wirtz KWA, Van Deenen LLM: Biochem J 174:413–420, 1978.

    Google Scholar 

  17. Zilversmit DB, Hughes ME: Biochim Biophys Acta 469:99–110, 1977.

    Google Scholar 

  18. Irvine RF, Dawson RMC: Biochem Soc Trans 8:27–30, 1980.

    Google Scholar 

  19. Shapiro B: In: Snyder F (ed), Lipid Metabolism in Mammals, Vol 1. Plenum Press, New York and London, 1977, pp 287–316.

    Google Scholar 

  20. Masters CJ, Holmes RS: Physiol Rev 57: 816–882, 1977.

    Google Scholar 

  21. Svoboda D, Grady H, Azarnoff D: J Cell Biol 35:127–152, 1967.

    Google Scholar 

  22. Platt DS, Thorpe JM: Biochem Pharmacol 15:915–925, 1966.

    Google Scholar 

  23. Osorio C, Walton KW, Browne CHW, West D, Whystock P: Biochem Pharmacol 14: 1003–1016, 1968.

    Google Scholar 

  24. Lazarow PB: Science 197:580–581, 1977.

    Google Scholar 

  25. Thurman RG, McKenna W: Hoppe-Seyler's Z Physiol Chem 355:336–340, 1974.

    Google Scholar 

  26. Oshino N, Jamieson D, Sugano T, Chance B: Biochem J 146:67–77, 1975.

    Google Scholar 

  27. Duley J, Holmes RS: Genetics 76:93–97, 1974.

    Google Scholar 

  28. Miles JL, Holmes RS: J Exp Zool 192:119–125, 1975.

    Google Scholar 

  29. Higgins JJ In: Majchrowicz E, Noble EP (eds), Biochemistry and Pharmacology of Ethanol, Vol 1. Plenum Press, New York, 1979, pp 249–351.

    Google Scholar 

  30. Reitz RC: In: Majchrowicz E, Noble EP (eds), Biochemistry and Pharmacology of Ethanol, Vol 1. Plenum Press, New York, 1979, pp 353–382.

    Google Scholar 

  31. Scheig R: In: Majchrowicz E, Noble EP (eds), Biochemistry and Pharmacology of Ethanol, Vol 1. Plenum Press, New York, 1979, pp 603–622.

    Google Scholar 

  32. Hassinen IE, Kahonen MT: In: Thurman RG, Yonetani T, Williamson JR, Chance B (eds), Metabolism of Ethanol. Academic Press, New York, 1974, pp 199–206.

    Google Scholar 

  33. Alling C, Gustavsson L, Anggard E: FEBS Lett 152:24–28, 1983.

    Google Scholar 

  34. Havre P, Abrams MA, Corrall RJM, Yu LC, Szczepanik PA, Feldman HB, Klein P, Kong MS, Margolis JM, Landau BR: Arch Biochem Biophys 182:14–23, 1977.

    Google Scholar 

  35. Rognstad R, Grunnet N: In: Majchrowicz E, Noble EP (eds), Biochemistry and Pharmacology of Ethanol, Vol 1. Plenum press, New York, 1979, pp 65–85.

    Google Scholar 

  36. Blomstrand R, Kager L: Life Sci 13:113–123, 1973.

    Google Scholar 

  37. Blomstrand R, Kager L, Lantto O: Life Sci 13:1131–1141, 1973.

    Google Scholar 

  38. Baraona E, Lieber CS: J Lipid Res 20:289–315, 1979.

    Google Scholar 

  39. Neat CE, Thomassen MS, Osmundsen H: Biochem J 186:369–371, 1980.

    Google Scholar 

  40. Krahling JB, Gee R, Murphy PA, Kirk JR, Tolbert NE: Biochem Biophys Res Commun 82:136–141, 1978.

    Google Scholar 

  41. Price VE, Sterling WR, Tarantola VA, Hartley RW Jr, Rechcigl M Jr: J Biol Chem 237:3468–3475, 1962.

    Google Scholar 

  42. Crane DI, Masters CJ: Arch Biochem Biophys 229:104–112, 1983.

    Google Scholar 

  43. Osumi T, Hashimoto T: Biochem Biophys Res Commun 83:479–485, 1978.

    Google Scholar 

  44. Heim WG, Appelman D, Pyfrom HT: Am J Physiol 186:19–23, 1956.

    Google Scholar 

  45. Hayashi N, Kurashima Y, Kikuchi G: Arch Biochem Biophys 148:10–26, 1972.

    Google Scholar 

  46. Schacter BA, Marver HS, Meyer UA: Drug Metab Dispos 1:286–292, 1973.

    Google Scholar 

  47. Rydstrom J, Texeira DA, Cruz A, Ernster L: Eur J Biochem 17:56–62, 1970.

    Google Scholar 

  48. De Duve C: Harvey Lect Set 59:48–97, 1965.

    Google Scholar 

  49. Tolbert NE: Ann Rev Biochem 50:133–157, 1981.

    Google Scholar 

  50. Little SA, de Haen C: J Biol Chem 255:10888–10895, 1980.

    Google Scholar 

  51. Mannaerts GP, Debeer LJ: Ann NY Acad Sci 386:30–39, 1982.

    Google Scholar 

  52. Lazarow PB: J Biol Chem 253:1522–1528, 1978.

    Google Scholar 

  53. Zwart K, Hwarder W: Ann NY Acad Sci 386:414–416, 1982.

    Google Scholar 

  54. Masters CJ, Holmes RS: Int J Biochem 8:549–553, 1977.

    Google Scholar 

  55. Masters CJ: Ann NY Acad Sci 386:301–313, 1982.

    Google Scholar 

  56. Masters CJ, Crane DI: Trends Biochem Sci 9:314–317, 1984.

    Google Scholar 

  57. Foerster EC, Fahrenkemper T, Rabe U, Graf P, Sies H: Biochem J 196:705–712, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masters, C., Crane, D. On the role of peroxisomes in the metabolism of lipids — evidence from studies on mammalian tissues in vivo . Mol Cell Biochem 65, 23–35 (1984). https://doi.org/10.1007/BF00226016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226016

Keywords

Navigation