Skip to main content
Log in

A quantitative model of successive color induction in the honeybee

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Intensity discrimination experiments are performed with individual walking honeybees trained to color stimuli (UV, blue and green) of constant intensity. The choice behavior to stimuli of identical wavelength spectrum but different intensities is tested. A graded choice behavior is found. The training intensity is chosen with the highest probability in most cases. Phototaxis as well as brightness discrimination can be excluded. The choice behavior is explained exclusively by discrimination of chromaticness (hue and saturation) according to the Bezold-Brücke shift.

The bees adapt to the chromatic stimuli during their choices. From the behavioral data, it is concluded that in adaptation, adjustment in photoreceptor sensitivity in one receptor also affects the sensitivity of the other receptors (“co-adaptation”). The linear adaptation model corresponding to the von Kries Coefficient Law used up to now to describe adaptation to white light in the honeybee does not describe this type of adaptation.

A quantitative model of adaptation to chromatic stimuli extending the linear adaptation model is developed.

The most reasonable mechanism of co-adaptation is optical coupling by lateral filtering. Other mechanisms such as electrical coupling are unlikely, since their effects on color vision would lead to effects inconsistent with Graßmann's Laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpern M (1972) Eye movements. In: Jameson D, Hurvich LM (eds) Handbook of sensory physiology, vol VII/4. Springer, Berlin Heidelberg New York, pp 303–330

    Google Scholar 

  • Autrum H (1981) Light and dark adaptation in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 1–91

    Google Scholar 

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31: 1381–1397

    Google Scholar 

  • Backhaus W (1992) The Bezold-Brücke effect in the color vision system of the honeybee. Vision Res 32: 1425–1431

    Google Scholar 

  • Backhaus W (1993) Color vision and color choice behavior of the honeybee. Apidologie 24: 309–331

    Google Scholar 

  • Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honeybee. Biol Cybern 55: 321–331

    Google Scholar 

  • Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56: 293–304

    Google Scholar 

  • Bader CR, Baumann F, Bertrand D (1976) Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera L.). J Gen Physiol 67: 475–491

    Google Scholar 

  • Bernard DG, Wehner R (1980) Intracellular optical physiology of the bee's eye. I. Spectral sensitivity. J Comp Physiol 137: 193–203

    Google Scholar 

  • Bezold W von (1873) Über das Gesetz der Farbenmischung und die physiologischen Grundfarben. Ann Phys Chem 150: 221–247

    Google Scholar 

  • Brandt R, Backhaus W, Dittrich M, Menzel R (1993) Simulation of threshold spectral sensitivity according to the color theory for the honeybee. In: Elsner N, Heisenberg M (eds) Proc 21th Göttingen Neurobiol Conf. Thieme, Stuttgart, p 374

    Google Scholar 

  • Brücke EW (1852) Untersuchungen über subjektive Farben. Akad Wiss Wien, math-nat Kl 3: 95–108 (also published in 1952: Archs Sci Phys Nat 19: 121–135)

    Google Scholar 

  • CIE (1987) International light vocabulary. Publication CIE No 17.4. Bureau Central de la Comission Electrotechnique Internationale, Geneva

    Google Scholar 

  • Dittrich M (1995) Time course of color induction in the honeybee. J Comp Physiol A 177: 207–217

    Google Scholar 

  • Graßmann H (1853) Zur Theorie der Farbenmischung. Ann Phys Chem 89: 69–84

    Google Scholar 

  • Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80: 439–472

    Google Scholar 

  • Henderson ST (1970) Daylight and its spectrum. Hilger, London

    Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B 231: 415–435

    CAS  PubMed  Google Scholar 

  • Kolb G, Autrum H (1974) Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J Comp Physiol 94: 1–6

    Google Scholar 

  • Kries J von (1904) Die Gesichtsempfindungen. In: Nagel W (ed) Handbuch der Physiologie des Menschen, Vol 3. Vieweg, Braunschweig, pp 109–282

    Google Scholar 

  • Labhart T (1974) Behavioral analysis of light intensity discrimination and spectral sensitivity in the honey bee, Apis mellifera. J Comp Physiol 95: 203–216

    Google Scholar 

  • Lamb TD, Pugh EN (1992) G-protein cascades: gain and kinetics. Trends Neurosci 15: 291–298

    Google Scholar 

  • Langer H (1975) Properties and functions of screening pigments in insect eyes. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 429–455

    Google Scholar 

  • Laughlin SB, Hardie RC (1978) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J Comp Physiol 128: 319–340

    Google Scholar 

  • Lipetz LE (1971) The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein (ed) Handbook of sensory physiology, vol I. Springer, Berlin Heidelberg New York, pp 191–225

    Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56: 22–62

    Google Scholar 

  • Menzel R (1981) Achromatic vision in the honeybee at low light intensities. J Comp Physiol 141: 389–393

    Google Scholar 

  • Menzel R, Backhaus W (1989) Color vision in honeybees: phenomena and physiological mechanisms. In: Stavenga DC, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 281–297

    Google Scholar 

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. MacMillan, London, pp 262–293

    Google Scholar 

  • Menzel R, Greggers U (1985) Natural phototaxis and its relation to color vision in honeybees. J Comp Physiol A 157: 311–321

    Google Scholar 

  • Menzel R, Ventura DP, Werner A, Joaquim LCM, Backhaus W (1989) Spectral sensitivity of single photoreceptors and color vision in the stingless bee, Melipona quadrifasciata. J Comp Physiol A 166: 151–164

    Google Scholar 

  • Roebroek JGH, Stavenga DG (1990a) On the effective optical density of the pupil mechanism in fly photoreceptors. Vision Res 30: 1235–1242

    Google Scholar 

  • Roebroek JGH, Stavenga DG (1990b) Insect pupil mechanisms. IV. Spectral characteristics and light intensity dependence in the blowfly, Calliphora erythrocephala. J Comp Physiol A 166: 537–543

    Google Scholar 

  • Sachs L (1984) Angewandte Statistik, 6 edition. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255: 480–483

    Google Scholar 

  • Snyder AW (1975) Photoreceptor optics — theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 38–55

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439

    Google Scholar 

  • Stavenga DG, Kuiper JW (1977) Insect pupil mechanisms. I. On the pigment migration in the retinula cells of Hymenoptera (suborder Apocrita). J Comp Physiol 113: 55–72

    Google Scholar 

  • Stieve H (1984) Biophysik des Sehvorganges. Phys Bl 40: 205–211

    Google Scholar 

  • Tsukahara Y, Horridge GA (1977) Interaction between two retinula cell types in the anterior eye of the dronefly Eristalis. J Comp Physiol 115: 287–298

    Google Scholar 

  • Yarbus AL (1967) Eye movement and vision. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittrich, M. A quantitative model of successive color induction in the honeybee. J Comp Physiol A 177, 219–234 (1995). https://doi.org/10.1007/BF00225101

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225101

Key words

Navigation