Skip to main content
Log in

The response of interneurons in the spider CNS (Cupiennius salei Keyserling) to vibratory courtship signals

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

  1. 1.

    We studied the response of plurisegmental interneurons in the suboesophageal ganglionic mass of female spiders (Cupiennius salei) to male vibratory courtship signals.

  2. 2.

    The opisthosomal vibrations (low frequency component) and the pedipalpal percussions (high frequency component) are processed in parallel by interneuron type I and type II, respectively (Figs. 3, 7).

  3. 3.

    Type III, IV and V interneurons represent the macrostructure of the male courtship signals (Figs. 8, 9, 10), i.e. the beginning and the end of a series (type III, V) or the end of the series only (type IV). The macrostructure is known to influence the response probability of the female. The spontaneous bursting activity of a type VI neuron undergoes slow and long lasting changes upon stimulation with natural courtship signals (Fig. 11).

  4. 4.

    Many interneurons responded to natural signals but not to behaviourally effective computer models. This is presumably due to the lack of spectral complexity of the model compared to natural signals. Differences in the natural conspecific and heterospecific signals, however, are represented by the neuronal response (Fig. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MO :

metatarsal lyriform organ

PI :

plurisegmental interneuron

SLT :

sensory longitudinal tract

References

  • Alexander RD (1960) Sound communication in Orthoptera and Cicadidae. In: Lanyon WE, Tavolga WN (eds) Animal sound and communication. No 7 Am Inst Biol Sci Publ, Washington DC, pp 38–91

    Google Scholar 

  • Anton S, Barth FG (1993) Central nervous projection patterns of trichobothria and other cuticular sensilla in the wandering spider Cupiennius salei (Arachnida, Araneae). Zoomorphology 113: 21–32

    Google Scholar 

  • Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104: 344–359

    Google Scholar 

  • Babu KS, Barth FG (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei Keys. Cell Tissue Res 258: 69–82

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt filled neurons in wholemount preparations. Brain Res 138: 359–363

    Google Scholar 

  • Barth FG (1986) Vibrationssinn und vibratorische Umwelt von Spinnen. Naturwissenschaften 73: 519–530

    Google Scholar 

  • Barth FG (1993) Sensory guidance in spider pre-copulatory behaviour. Comp Biochem Physiol 104A: 717–733

    Google Scholar 

  • Barth FG, Geethabali(1982) Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148: 175–185

    Google Scholar 

  • Barth FG, Schmitt A (1991) Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behav Ecol Sociobiol 29: 333–339

    Google Scholar 

  • Baurecht D, Barth FG (1992) Vibratory communication in spiders I. Representation of male courtship signals by female vibration receptor. J Comp Physiol A 171: 231–243

    Google Scholar 

  • Baurecht D, Barth FG (1993) Vibratory communication in spiders II. Representation of stimulus parameters of synthetic male courtship signals by female vibration receptor. J Comp Physiol A 173: 309–319

    Google Scholar 

  • Baurecht D, Deutsch WA, Noll A, Barth FG (1989) Digital signal processing system: recording, analysis, synthesis and replay in bioacoustical experiments. In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart New York, p 141

    Google Scholar 

  • Ewing AW (1989) Arthropod bioacoustics. Cornell University Press, Ithaca, New York, pp 143–198

    Google Scholar 

  • Gronenberg W (1989) Anatomical and physiological observations on the organization of mechanoreceptors and local interneurons in the central nervous system of the wandering spider Cupiennius salei. Cell Tissue Res 258: 163–175

    Google Scholar 

  • Gronenberg W (1990) The organization of mechanosensitive interneurons in the central nervous system of the wandering spider Cupiennius salei. Cell Tissue Res 260: 49–61

    Google Scholar 

  • Hall J (1985a) Neuroanatomical and neurophysiological aspects of vibrational processing in the central nervous system of semiterrestrial crabs I. Vibration sensitive interneurons in the fiddler crab, Uca minax. J Comp Physiol 157: 91–104

    Google Scholar 

  • Hall J (1985b) Neuroanatomical and neurophysiological aspects of vibrational processing in the central nervous system of semi-terrestrial crabs II. Comparative anatomical and physiological aspects of stimulus processing. J Comp Physiol A 157: 105–113

    Google Scholar 

  • Helversen O von, Helversen D von (1987) Innate receiver mechanisms in the acoustic communication of orthopteran insects. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester University Press, Manchester, pp 104–150

    Google Scholar 

  • Hergenröder R, Barth FG (1983a) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys.). J Comp Physiol 152: 347–358

    Google Scholar 

  • Hergenröder R, Barth FG (1983b) Vibratory signals in spider behavior: How do the sensory inputs from the eight legs interact in orientation? J Comp Physiol 152: 361–371

    Google Scholar 

  • Kadel M (1992) Zentralnervöse Korrelate lokaler und plurisegmentaler Muskelreflexe bei Spinnen: physiologische und morphologische Identifizierung von Einzelneuronen. Dissertation, Johann Wolfgang Goethe-Universität, Frankfurt am Main

    Google Scholar 

  • Lachmuth U, Grasshoff M, Barth FG (1984) Taxonomische Revision der Gattung Cupiennius SIMON 1891. Senckenbergiana Biol 65: 329–372

    Google Scholar 

  • Loewe R, Linzen B, Stackelberg W (1970) Die gelösten Stoffe in der Hämolymphe einer Spinne, Cupiennius salei (Keys.). Z Vergl Physiol 66: 27–34

    Google Scholar 

  • Maier L, Root TM, Seyfarth EA (1987) Heterogeneity of spider leg muscle: Histochemistry and electrophysiology of identified fibers in the claw levator. J Comp Physiol B 157: 285–294

    Google Scholar 

  • Markl H (1969) Verständigung durch Vibrationssignale bei Arthropoden. Naturwissenschaften 56: 499–505

    Google Scholar 

  • Milde JJ, Seyfarth EA (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol A 162: 623–631

    Google Scholar 

  • Perdeck AC (1957) The isolating value of specific song patterns in two sibling species of grasshoppers (Chorthippus brunneus Thumberg and Ch. biguttulus L.). Behaviour 12: 1–75

    Google Scholar 

  • Ronacher B, Stumpner A (1988) Filtering of behaviourally relevant temporal parameters of a grasshopper's song by an auditory interneuron. J Comp Physiol A 163: 517–523

    Google Scholar 

  • Rovner JS, Barth G (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214: 464–466

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155: 171–185

    Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1992) Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology 90: 293–306

    Google Scholar 

  • Schmitt A, Friedel T, Barth FG (1993) Importance of pause between spider courtship vibrations and general problems using synthetic stimuli in behavioural studies. J Comp Physiol A 172: 707–714

    Google Scholar 

  • Schlich W, Barth FG (1985) Temporal patterns in the vibratory courtship signals of the wandering spider Cupiennius salei Keys. Behav Ecol Sociobiol 16: 263–271

    Google Scholar 

  • Schüch W, Barth FG (1990) Vibratory communication in a spider: female responses to synthetic male vibrations. J Comp Physiol A 166: 817–826

    Google Scholar 

  • Speck-Hergenröder J, Barth FG (1987) Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. J Comp Physiol A 160: 467–475

    Google Scholar 

  • Stumpner A, Ronacher B, von Helversen O (1991) Auditory interneurons in the metathoracic ganglion of the grasshopper Chorthippus biguttulus II. Processing of temporal patterns of the song of the male. J Exp Biol 158: 411–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedel, T., Barth, F.G. The response of interneurons in the spider CNS (Cupiennius salei Keyserling) to vibratory courtship signals. J Comp Physiol A 177, 159–171 (1995). https://doi.org/10.1007/BF00225096

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225096

Key words

Navigation