Skip to main content
Log in

Intramural distribution of immunoreactive vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin in the oesophago-gastro-pyloric region of the human gut

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The intramural distribution of vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin was studied in the oesophago-gastro-pyloric region of the human gut. At each of 21 sampling sites encompassing this entire area, the gut wall was separated into mucosa, submucosa and muscularis externa, and extracted for radioimmunoassay. VIP levels in the mucosa were very high in the proximal oesophagus (1231±174 pmol/g, mean±SEM) and showed varied, but generally decreasing concentrations towards the stomach, followed by a clear-cut increase across the pyloric canal (distal antrum: 73±16 pmol/g, proximal duodenum: 366±62 pmol/ g); consistent levels were found in submucosa and muscle (200–400 pmol/g) at most sites, the stomach again showing lower concentrations. By contrast, substance P was present in small amounts as far as the proximal stomach, but sharply increased across the pyloric canal, especially in mucosa and submucosa (distal antrum: 20±6.5 and 5.5±1.3 pmol/g; proximal duodenum: 62±8.5 and 34±11 pmol/g, respectively). Somatostatin concentrations were very low in the mucosa of the oesophagus and stepwise increased in the cardiac, mid-gastric and pyloric mucosa (cardia: 224±72 pmol/g; distal antrum: 513±152 pmol/g; proximal duodenum: 1013±113 pmol/g); concentrations in the submucosa and muscularis were generally low, with the exception of antrum and duodenum. Mammalian bombesin was comparatively well represented throughout the oesophageal muscularis (5–8 pmol/g), but most abundant in the stomach in all layers (oxyntic mucosa: 24±2.7 pmol/g; submucosa: 20±5.7 pmol/g; muscle: 28±5.0 pmol/g). In conclusion, a distinct differential distribution of the four peptides studied was revealed, indicating a diffuse, but highly differentiated peptide-containing innervation of the proximal human gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggestrup S, Uddman R, Jensen SL, Sundler F, Schaffalitzky de Muckadell OB, Hoist JJ, Hakanson R, Ekman R, Sorensen HR (1985) Regulatory peptides in the lower esophageal sphincter of man. Regul Pept 10:167–178

    Google Scholar 

  • Aggestrup S, Uddman R, Jensen SL, Hakanson R, Sundler F, Schaffalitzky de Muckadell OB, Emson P (1986) Regulatory peptides in lower esophageal sphincter of pig and man. Dig Dis Sci 31:1370–1375

    Google Scholar 

  • Aggestrup S, Emson P, Uddman R, Sundler F, Jensen SL, Sorensen HR (1987) Distribution and content of neuropeptide Y in the human lower esophageal sphincter. Digestion 36:68–73

    Google Scholar 

  • Alumets J, Fahrenkrug J, Hakanson R, Schaffalitzky de Muckadell OB, Sundler F, Uddman R (1979) A rich VIP nerve supply is characteristic of sphincters. Nature 280:155–156

    Google Scholar 

  • Baldissera FGA, Hoist JJ, Jensen SL, Krarup T (1985) Distribution and molecular forms of peptides containing somatostatin immuno-determinants in extracts from the entire gastrointestinal tract of man and pig. Biochem Biophys Acta 838:132–143

    Google Scholar 

  • Bloom SR, Long RG (1982) Radioimmunoassay of gut regulatory peptides. Saunders, London

    Google Scholar 

  • Brodin E, Sjölund K, Hakanson R, Sundler F (1983) Substance P-containing nerve fibres are numerous in human but not in feline intestinal mucosa. Gastroenterology 85:557–564

    Google Scholar 

  • Burnstock G (1986) The changing face of autonomic neuro-transmission. Acta Physiol Scand 126:67–91

    Google Scholar 

  • Crist J, Gidda JS, Goyal RK (1984) Intramural mechanism of esophageal peristalsis: roles of cholinergic and noncholinergic nerves. Proc Natl Acad Sci USA 81:3595–3599

    Google Scholar 

  • Edin R, Lundberg JM, Ahlman H, Dahlström A, Fahrenkrug J, Hökfelt T, Kewenter J (1979) On the VIP-ergic innervation of the feline pylorus. Acta Physiol Scand 107:185–187

    Google Scholar 

  • Edin R, Lundberg J, Terenius L, Dahlström A, Hökfelt T, Kewenter J, Ahlman H (1980) Evidence for vagal enkephalinergic neural control of the feline pylorus and stomach. Gastroenterology 78:492–497

    Google Scholar 

  • Ferri G-L (1988) Human gut neuroanatomy: methodology for a quantitative analysis of nerve elements and neurotransmitter diversity in the human enteric nervous system. Basic Appl Histochem 32: 117–144

    Google Scholar 

  • Ferri G-L, Adrian TE, Ghatei MA, O'Shaughnessy DJ, Probert L, Lee YC, Buchan AMJ, Polak JM, Bloom SR (1983) Tissue localisation and relative distribution of regulatory peptides in separated layers from the human bowel. Gastroenterology 84:777–786

    Google Scholar 

  • Ferri G-L, Botti P, Biliotti G, Rebecchi L, Bloom SR, Tonelli L, Labó G, Polak JM (1984) VIP-, substance P- and met-enke- phalin-immunoreactive innervation of the human gastroduodenal mucosa and Brunner's glands. Gut 25:948–952

    Google Scholar 

  • Ferri G-L, Morreale RA, Soimero L, Biliotti G, Dockray GJ (1987a) Intramural distribution of Met5-enkephalin-Arg6- Gly7-Leu8 in sphincter regions of the human gut. Neurosci Lett 74:304–308

    Google Scholar 

  • Ferri G-L, Adrian TE, Ghatei MA, Soimero L, Rebecchi L, Biliotti G, Polak JM, Bloom SR (1987b) Intramural distribution of regulatory peptides in the human stomach and duodenum. Hepato-gastroenterol 34:81–85

    Google Scholar 

  • Ferri G-L, Adrian TE, Soimero L, McGregor GP, Ghatei MA, Morreale R, Rebecchi L, Tonelli L, Polak JM, Bloom SR (1987c) Regulatory peptide distribution in separated layers of the human jejunum. Digestion 37:15–21

    Google Scholar 

  • Ferri G-L, Adrian TE, Allen JE, Soimero L, Cancellieri A, Yeats JC, Blank M, Polak JM, Bloom SR (1988a) Intramural distribution of regulatory peptides in the sigmoid-recto-anal region of the human gut. Gut 29:762–768

    Google Scholar 

  • Ferri G-L, Watkinson A, Dockray GJ (1988b) Pro-enkephalin A-derived peptides in the human gut. Gastroenterology 95:1011–1017

    Google Scholar 

  • Ferri G-L, Innocenti F, Frongillo D, Polak JM, James NT (1989) Morphometry of peptide-containing nerves in gut muscle layers: a quantitative approach to the study of autonomic neuro-muscular junctions. J Neurosci Methods (in press)

  • Flemström G, Kivilaakso E (1983) Demonstration of a pH gradient at the luminal surface of rat duodenum in vivo and its dependence on mucosal alkaline secretion. Gastroenterology 84:787–794

    Google Scholar 

  • Gabella G (1979) Innervation of the gastrointestinal tract. Int Rev Cytol 59:129–193

    Google Scholar 

  • Gillespie JS (1982) Non-adrenergic non-cholinergic inhibitory control of gastrointestinal motility. In: Wienbeck M (ed) Motility of the Digestive Tract. Raven Press, New York, pp 51–66

    Google Scholar 

  • Goyal RK, Cobb BW (1981) Motility of the pharynx, esophagus, and esophageal sphincters. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. Raven Press, New York, pp 359–391

    Google Scholar 

  • Greeley GH, Partin M, Spannagel A, Dinh T, Hill FLC, Trowbridge J, Salter M, Chuo H-F, Thompson JC (1986) Distribution of bombesin-like peptides in the alimentary canal of several vertebrate species. Regul Pept 16:169–181

    Google Scholar 

  • Holzer P, Sametz W (1986) Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurons. Gastroenterology 91:975–981

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Cell Tissue Res 237:299–308

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1985) Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastro-intestinal mucosa of five mammalian species. J Comp Neurol 236:403–422

    Google Scholar 

  • Kirkegaard P, Lundberg JM, Poulsen SS (1981) Vasoactive intestinal peptidergic nerves and Brunner's gland secretion in the rat. Gastroenterology 81:872–878

    Google Scholar 

  • Leander S, Brodin E, Hakanson R, Sundler F, Uddman R (1982) Neuronal substance P in the oesophagus. Distribution and effects on motor activity. Acta Physiol Scand 115:427–435

    Google Scholar 

  • Lidberg P, Dahlström A, Lundberg JM, Ahlman H (1983) Different modes of action of substance P in the motor control of the feline stomach and pylorus. Regul Pept 7:41–52

    Google Scholar 

  • Lidberg P (1985) On the role of substance P and serotonin in the pyloric motor control. An experimental study in cat and rat. Acta Physiol Scand [Suppl] 538:1–69

    Google Scholar 

  • Llewellyn-Smith IJ, Furness JB, Murphy R, O'Brien PE, Costa M (1984) Substance P-containing nerves in the human small intestine. Gastroenterology 86:421–435

    Google Scholar 

  • Lundberg JM, Hökfelt T, Kewenter J, Pettersson G, Ahlman H, Edin R, Dahlström A, Nilsson G, Terenius L, Uvnäs-Wallensten K, Said S (1979) Substance P-, VIP-, and enkephalin-like immunoreactivity in the human vagus nerve. Gastroenterology 77:468–471

    Google Scholar 

  • Makhlouf GM (1982) Role of VIP in the function of the gut. In: Said SI (ed) Vasoactive Intestinal Peptide. Raven Press, New York, pp 425–426

    Google Scholar 

  • McGregor GP, Bishop AE, Blank MA, Christofides ND, Yiangou Y, Polak JM, Bloom SR (1984) Comparative distribution of vasoactive intestinal polypeptide (VIP), substance P and PHI in the enteric sphincters of the cat. Experientia 40:469–471

    Google Scholar 

  • Mir SS, Telford GL, Mason GR, Ormsbee HS (1979) Noncholinergic nonadrenergic inhibitory innervation of the canine pylorus. Gastroenterology 76:1443–1448

    Google Scholar 

  • Penman E, Wass JAH, Butler MG, Penny ES, Price J, Wu P, Rees LH (1983) Distribution and characterisation of immunoreactive somatostatin in human gastrointestinal tract. Regul Pept 7:53–65

    Google Scholar 

  • Price J, Penman E, Wass JAH, Rees LH (1984) Bombesin-like immuno-reactivity in human gastrointestinal tract. Regul Pept 9:1–10

    Google Scholar 

  • Reynolds JC, Dukehart MR, Ouyang A, Cohen S (1986) Interactions of bombesin and substance P at the feline lower esophageal sphincter. J Clin Invest 77:436–440

    Google Scholar 

  • Said SI (1982) Vasoactive intestinal polypeptide. Raven Press, New York

    Google Scholar 

  • Uddman R, Alumets J, Edvinsson L, Hakanson R, Sundler F (1978) Peptidergic (VIP) innervation of the esophagus. Gastroenterology 75:5–8

    Google Scholar 

  • Uddman R, Alumets J, Håkanson R, Sundler F, Walles B (1980) Peptidergic (enkephalin) innervation of the mammalian esophagus. Gastroenterology 78:732–737

    Google Scholar 

  • Underwood EE (1970) Quantitative stereology. Addison-Wesley Publishing Co., Reading, Massachusetts

    Google Scholar 

  • Wattchow DA, Furness JB, Costa M, O'Brien PE, Peacock M (1987) Distribution of neuropeptides in the human oesophagus. Gastroenterology 93:1363–1371

    Google Scholar 

  • Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41

    Google Scholar 

  • Weibel ER (1973) Stereological techniques for electron microscopic morphometry. In: Hayat MA (ed) Principles and Techniques of Electron Microscopy, Biological Applications, vol. 3. Van Nostrand Reinhold Co., New York, pp 237–296

    Google Scholar 

  • Williams PL, Warwick R (1980) Gray's anatomy, 36th ed. Churchill Livingstone, Edinburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferri, GL., Adrian, T.E., Soimero, L. et al. Intramural distribution of immunoreactive vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin in the oesophago-gastro-pyloric region of the human gut. Cell Tissue Res. 256, 191–197 (1989). https://doi.org/10.1007/BF00224734

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224734

Key words

Navigation