Skip to main content
Log in

Thin-oil-film interferometric skin-friction measurements in short-duration supersonic flow

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A direct experimental comparison was performed on two thin-oil-film skin-friction measurement techniques applied in short-duration, supersonic flow facilities. While both techniques use laser interferometry to measure the time rate of thinning of a thin-oil-film, one technique acquires data with a dual-laser-beam (DLB) configuration and the other gathers information with an expanded-laser-beam (ELB) configuration. The experimental investigation, as well as a theoretical uncertainty analysis, showed that when the data is limited due to short run-times, larger uncertainties or insufficient data for the determination of the skin-friction occurred with the DLB technique. Unlike the DLB method, the ELB technique can resolve the oil-film profile at a given instant, with two such measurements separated by a short time interval giving sufficient data to determine skin-friction. Thus the ELB technique is more suitable for short-duration facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cf :

skin-friction coefficient

dP/dx :

external-flow pressure gradient in the streamwise direction

g :

gravitational acceleration

h :

oil-film height at distance x

i :

beam incidence angle

l :

length

M :

Mach number

n o :

oil refraction index

N :

interference fringe number

Q :

volumetric flow rate per unit length

r :

beam refraction angle

Re :

Reynolds number

s :

oil-film slope at a given time

t :

time

t o :

time origin

u(y):

oil-film velocity profile

V :

continuity-wave velocity

x :

streamwise distance from oil-film leading-edge

Δx :

Laser beam spacing of DLB configuration

Δx p :

pixel spacing of CCD linear array

y :

transverse coordinate normal to x

θ :

angle of inclination of the test surface

λ :

Laser wavelength

μ :

absolute oil viscosity

ν :

kinematic oil viscosity

g9 :

oil density

τ :

wall shear stress (skin-friction)

(-):

averaged value

(′):

corrected value

DLB:

dual-laser-beam

ELB:

expanded-laser-beam

MEAS:

measured value

NOM:

nominal value

d :

downstream beam

u :

upstream beam

∞:

free stream

References

  • Bandyopadhyay, P. R.; Weinstein, L. M. 1991: A reflection-type oil-film skin-friction meter. Exp. Fluids 11, 281–292.

    Google Scholar 

  • Born, M.; Wolf, E. 1970: Principles of optics, 4th ed., pp. 281–287. Oxford: Pergamon Press.

    Google Scholar 

  • Hubner, J. P. 1991: Comparison of two thin-oil-film laser interferometric skin-friction measurement techniques within compressible flow. M. S. Thesis, University of Florida.

  • Hubner, J. P.; Carroll, B. F. 1991: Uncertainty analysis on thin-oil-film skin-friction measurements in compressible flow. ICIASF 231–239.

  • Kim, K. -S. 1989: Skin friction measurements by laser interferometry in supersonic flows. Ph.D. Thesis, Pennsylvania State University.

  • Kim K, -S.; Settles, G. S. 1988: Skin friction measurements by laser interferometry in swept shock wave/turbulent boundary-layer interactions. AIAA Paper 88-0497.

  • Marquez Olivares, J. 1989: Absolutbestimmung der Wandschub-spannung mit Hilfe eines Interferometers. DFVLR-FB 89-13.

  • Monson, D. J.; Higuchi, H. 1981: Skin friction measurements by a dual-laser-beam interferometric technique. AIAA J. 19, 739–744.

    Google Scholar 

  • Murphy, J. D.; Westphal, R. B. 1986: The laser interferometer skin-friction meter: A numerical and experimental study. J. of Physics E: Sci. Instr. 19, 744–751.

    Google Scholar 

  • Monson, D. J.; Driver, D. M.; Szodruch, J. 1981: Application of a laser interferometric skin-friction meter in complex flows. ICIASF. 232–243.

  • Schlichting, H. 1979: Boundary-layer theory, 7th ed., pp. 715–723. New York: McGraw-Hill.

    Google Scholar 

  • Seto, J.; Hornung, H. G. 1991: Internally mounted thin-oil-film skin friction meter-comparison with floating element method with and without pressure gradient AIAA Paper 91-0090.

  • Sigalla, A. 1965: Calibration of Preston probes in supersonic flow. AIAA J. 3, 1531.

    Google Scholar 

  • Tanner, L. H. 1977a: A skin friction meter, using the viscosity balance principle, suitable for use with flat or curved metal surfaces. J. of Physics E: Sci. Instr. 10, 278–284.

    Google Scholar 

  • Tanner, L. H. 1977b: A comparison of the viscosity balance and Preston tube methods of skin friction measurement. J. of Physics E: Sci. Instr. 10, 627–632.

    Google Scholar 

  • Tanner, L. H.; Blows, L. G. 1976: A study of the motion of oil films on surfaces in air flow, with application to the measurement of skin friction. J of Physics E: Sci. Instr. 9. 194–202.

    Google Scholar 

  • Wallis, G. B. 1969: One-dimensional two-phase flow, 1st ed., pp. 122–135. New York: McGraw-Hill.

    Google Scholar 

  • Westphal, R. V.; Bachalo, W. D.; Houser, M. H. 1986: Improved skin friction interferometer. NASA TM 88216

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubner, J.P., Carroll, B.F. Thin-oil-film interferometric skin-friction measurements in short-duration supersonic flow. Experiments in Fluids 15, 315–322 (1993). https://doi.org/10.1007/BF00223409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223409

Keywords

Navigation