Skip to main content
Log in

Three-dimensional air pollutant modeling in the lower atmosphere

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A steady-state, three-dimensional turbulent diffusion equation describing the concentration distribution of an air pollutant from an elevated point source in the lower atmosphere is solved analytically. The same formulation can be used to obtain solutions from line, area or other kinds of sources. The solution is developed for the cases in which the velocity, vertical and lateral diffusivities are given by the power law. The model preserves the beauty of analytical solution without sacrificing much on the accuracy of approximating the velocity and eddy diffusivities. Methods of evaluating the parameters, which are required for the model applications, are discussed. Results indicate that the ratio of the plume width to the plume length increases with decreasing stability and with increasing source height. These consequences are in response to the variations of the size of eddies in the vertical direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brutsaert, W. and Yeh, G. T.: 1970a, ‘A Power Wind Law for Turbulent Transfer Computations’, Water Resources Res. 6, 1387–1391.

    Google Scholar 

  • Brutsaert, W. and Yeh, G. T.: 1970b, ‘Implication of a Type of Empirical Evaporation Formula for Lakes and Pans, Water Resources Res. 6, 1202–1208.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Calder, K. L.: 1949, ‘Eddy Diffusion and Evaporation in Flow Aerodynamically Smooth and Rough Surfaces: A Treatment Based on Laboratory Laws of Turbulent Flow with Special Reference to Conditions in the Lower Atmosphere’, Quart. J. Mech. Appl. Math. 2, 153–176.

    Google Scholar 

  • Carslaw, H. S. and Jaegar, J. C.: 1959, Conduction of Heat in Solids, Clarendon Press, Oxford.

    Google Scholar 

  • Davies, D. R.: 1947, ‘Turbulence and Diffusion in the Lower Atmosphere with Particular Reference to the Lateral Effect’, Proc. Roy. Soc. A190, 232–244.

    Google Scholar 

  • Davies, D. R.: 1950, ‘Three-Dimensional Turbulence and Evaporation in the Lower Atmosphere’, I and II’, Quart. J. Mech. Appl. Math. 3, 51–73.

    Google Scholar 

  • Dyer, A. J. and Hicks, B. B.: 1970, ‘Flux-Gradient Relationships in the Constant Flux Layer’, Quart. J. Roy. Meteorl. Soc. 96, 715–721.

    Google Scholar 

  • Ellison, T. H.: 1957, ‘Turbulent Transport of Heat and Momentum from an Infinite Rough Plane’, J. Fluid Mech. 2, 456–466.

    Google Scholar 

  • Frost, R.: 1946, ‘Turbulence and Diffusion in the Lower Atmosphere’, Proc. Roy. Soc. A186, 20–35.

    Google Scholar 

  • Gifford,Jr., F. A.: 1961, ‘Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion’, Nuclear Safety 2, 47–51.

    Google Scholar 

  • Gifford Jr., F. A.: 1968, ‘An Outline of Theories of Diffusion in the Lower Layer of the Atmosphere’, in Meteorology and Atomic Energy - 1968, D. H. Slade (ed.), USAEC Report TID-24190, 65–116, July, 1968.

  • Hanna, S. R.: 1974, ‘Fog and Drift Deposition from Evaporation Cooling Towers’, Nuclear Safety 15, 190–196.

    Google Scholar 

  • Kondo, J.: 1962, ‘Observations on Wind and Temperature Profiles near the Ground’, Science Reports, Tohoku University, Ser. 5, Geophys. 14, 41–56.

    Google Scholar 

  • Laikhtman, D. L. and Panomareva, S. M.: 1969, ‘On the Ratio of the Turbulent Transfer Coefficients for Heat and Momentum in the Surface Layer of the Atmosphere’, Izv. Atmos. Ocean Phys. 5, 1245–1250.

    Google Scholar 

  • Morse, P. M. and Feshbach, H.: 1953, Methods of Theoretical Physics, Part I, McGraw-Hill Book Company, Inc., New York, N.Y.

    Google Scholar 

  • Panofsky, H. A.: 1961, ‘An Alternative Derivation of the Diabatic Wind Profile’, Quart. J. Roy. Meteorol. Soc. 87, 109–110.

    Google Scholar 

  • Pruitt, W. O., Morgan, D. L., and Lourence, F. V.: 1973, ‘Momentum and Mass Transfer in the Surface Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 370–386.

    Google Scholar 

  • Ragland, K. W. and Peirce, J. J.: 1975, ‘Boundary Layer Model for Air Pollutant Concentrations Due to Highway Traffic, J. Air Poll. Control Assoc. 25, 48–51.

    Google Scholar 

  • Smith, F. B.: 1957, ‘The Diffusion of Smoke from a Continuous Elevated Point Source into a Turbulent Atmosphere’, J. Fluid Mech. 2, 49–76.

    Google Scholar 

  • Sutton, O. G.: 1934, ‘Wind Structure and Evaporation in a Turbulent Medium’, Proc. Roy. Soc. A149, 701–702.

    Google Scholar 

  • Sutton, O. G.: 1953, Micrometeorology, McGraw-Hill, New York, 333 pp.

    Google Scholar 

  • Sutton, W. G. L.: 1943, ‘On the Equation of Diffusion in a Turbulent Medium’, Proc. Roy. Soc. A182, 48–75.

    Google Scholar 

  • Swinbank, W. C.: 1964, ‘The Exponential Wind Profile’, Quart. J. Roy. Meteorol. Soc. 90, 119–135.

    Google Scholar 

  • Swinbank, W. C.: 1968, ‘A Comparison Between Predictions of Dimensional Analysis for the Constant Flux Layer and Observations in Unstable Conditions’, Quart. J. Roy. Meteorol. Soc. 94, 460–467.

    Google Scholar 

  • Watson, G. N.: 1966, A Treatise on the Theory of Bessel Functions, Cambridge at the University Press, Cambridge, Great Britain.

    Google Scholar 

  • Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range and Extension to Strong Stability’, Quart. J. Roy. Meteorol. Soc. 96, 67–90.

    Google Scholar 

  • Yamamoto, G.: 1959, ‘Theory of Turbulent Transfer in Non-Neutral Conditions’, J. Meteorol. Soc. Japan, Ser. 2, 37, 60–70.

    Google Scholar 

  • Yamamoto, G. and Shimanuki, A.: 1960, ‘Numerical Solution of the Equation of Atmospheric Turbulent Diffusion, Science Reports, Tohoku University, Ser. 5, Geophys. 12, 24–35.

    Google Scholar 

  • Yeh, G. T. and Brutsaert, W.: 1970, ‘Perturbation Solution of an Equation of Atmospheric Turbulent Diffusion’, J. Geophys. Res. 75, 5173–5178.

    Google Scholar 

  • Yeh, G. T. and Brutsaert, W.: 1971, ‘A Solution for Simultaneous Turbulent Heat and Vapor Transfer Between a Water Body and the Atmosphere’, Boundary-Layer Meteorol. 2, 64–68.

    Google Scholar 

  • Yeh, G. T.: 1975, ‘Green's Functions of a Diffusion Equation’, J. Geophys. Res. Letters 2, 293–296.

    Google Scholar 

  • Yih, C. S.: 1952a, ‘On a Differential Equational on Atmospheric Diffusion’, Trans. Amer. Geophys. Union 33, 8–12.

    Google Scholar 

  • Yih, C. S.: 1952b, ‘Similarity Solution of a Specialized Diffusion Equation’, Trans. Amer. Geophys. Union 33, 356–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at Tetra Tech, Inc., 630 N. Rosemead Blvd., Pasadena, California, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, GT., Huang, CH. Three-dimensional air pollutant modeling in the lower atmosphere. Boundary-Layer Meteorol 9, 381–390 (1975). https://doi.org/10.1007/BF00223389

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223389

Keywords

Navigation