Skip to main content

Pollutant Dispersion in the Atmosphere: A Solution Considering Nonlocal Closure of Turbulent Diffusion

  • Conference paper
Integral Methods in Science and Engineering
  • 1383 Accesses

Abstract

A special attention has been given to the issue of searching analytical solutions for the advection-diffusion equation in order to simulate the pollutant dispersion in the Atmospheric Boundary Layer (ABL). In this work we take a step forward assuming a transient three-dimensional problem with nonlocal closure of the turbulent diffusion. The problem of closing the turbulence in the advection-diffusion equation is modified considering a generic equation for the turbulent diffusion. The countergradient term in the turbulence closure made additional terms to appear in the advection-diffusion equation and these terms are related to the asymmetrical transport in the convective boundary layer. This new equation is solved by the 3D-GILTT method. Numerical results and statistical comparisons with experimental data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackadar, A.K.: Turbulence and diffusion in the atmosphere: lectures in Environmental Sciences. Springer-Verlag, 185pp. (1997).

    Google Scholar 

  2. Buske, D., Vilhena, M.T., Moreira, D.M., and Tirabassi, T.: An analytical solution of the advection-diffusion equation considering non-local turbulence closure. Environ. Fluid Mechanics 7, 43–54 (2007).

    Article  Google Scholar 

  3. Buske, D., Vilhena, M.T., Moreira, D.M. and Tirabassi, T.: An Analytical Solution for the Transient Two-Dimensional Advection-Diffusion Equation with Non-Fickian Closure in Cartesian Geometry by Integral Transform Technique. Integral Methods in Science and Engineering: Computational methods, Boston: Birkhauser, 33–40 (2010).

    Google Scholar 

  4. Buske, D., Vilhena, M.T., Segatto, C.F. and Quadros, R.S.: A General Analytical Solution of the Advection-Diffusion Equation for Fickian Closure. Integral Methods in Science and Engineering: Computational and Analytic Aspects, Boston: Birkhauser, 25–34 (2011).

    Google Scholar 

  5. Caughey, S.J.: Observed characteristics of the atmospheric boundary layer. In: Atmospheric turbulence and air pollution modeling, Boston, 1982.

    Google Scholar 

  6. Costa, C.P., Vilhena, M.T., Moreira, D.M. and Tirabassi, T.: Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer. Atmos. Environ. 40, n. 29, 5659–5669 (2006).

    Article  Google Scholar 

  7. Costa, C.P.; Tirabassi, T.; Vilhena, M.T. & Moreira, D.M. (2011). A general formulation for pollutant dispersion in the atmosphere. J. Eng. Math., Published online. Doi 10.1007/s10665-011-9495-z.

    Google Scholar 

  8. Deardorff, J.W.: The countergradient heat flux in the lower atmosphere and in the laboratory. J. Atmo. Sci. 23, 503–506 (1966).

    Article  Google Scholar 

  9. Deardorff, J.W.: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmo. Sci. 29, 91–115 (1972).

    Article  Google Scholar 

  10. Deardorff, J.W. and Willis, G.E.: A parameterization of diffusion into the mixed layer. J. Appl. Meteor. 14, 1451–1458 (1975).

    Article  Google Scholar 

  11. Degrazia, G.A., Campos Velho, H.F., Carvalho, J.C.: Nonlocal exchange coefficients for the convective boundary layer derived from spectral properties. Cont. Atm. Phys., 57–64 (1997).

    Google Scholar 

  12. Demuth, C.: A contribution to the analytical steady solution of the diffusion equation for line sources. Atm. Env. 12, 1255–1258 (1978).

    Article  Google Scholar 

  13. Degrazia, G.A., Moreira, D.M. and Vilhena, M.T.: Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a convective boundary layer. J. Appl. Meteor. 40, 1233–1240 (2001).

    Article  Google Scholar 

  14. Druilhet, A., Frangi, J.P, Guedalia, D. and Fontan, J.: Experimental studies of the turbulence structure parameters of the convective boundary layer. J. Clim. Appl. Meteorol. 22, 594–608 (1983).

    Article  Google Scholar 

  15. Ertel, H.: Der vertikale turbulenz-wärmestrom in der atmosphäre. Meteor. Z. 59, 250–253 (1942).

    Google Scholar 

  16. Gryning, S.E. and Lyck, E.: Atmospheric dispersion from elevated source in an urban area: comparison between tracer experiments and model calculations. J. Appl. Meteor. 23, 651–654 (1984).

    Article  Google Scholar 

  17. Hanna, S.R.: Confidence limit for air quality models as estimated by bootstrap and jacknife resampling methods. Atm. Env. 23, 1385–1395 (1989).

    Article  Google Scholar 

  18. Irwin, J.S.: A theoretical variation of the wind profile power-low exponent as a function of surface roughness and stability. Atm. Env. 13, 191–194(1979).

    Article  Google Scholar 

  19. Kaimal, J.C., Wyngaard, J.C., Haugen, D.A., Cot, O.R., Izumi, Y., Caughey, S.J. and Readings, C.J.: Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33, 2152–2169 (1976).

    Article  Google Scholar 

  20. Moreira, D.M., Vilhena, M.T., Tirabassi, T., Costa, C. and Bodmann, B.: Simulation of pollutant dispersion in atmosphere by the Laplace transform: the ADMM approach. Water, Air and Soil Pollution 177, 411–439 (2006a).

    Article  Google Scholar 

  21. Moreira, D.M., Vilhena, M.T., Buske, D. and Tirabassi, T.: The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL. Atm. Env. 40, 3186–3194 (2006b).

    Article  Google Scholar 

  22. Moreira, D. M., Vilhena, M. T., Buske, D. and Tirabassi, T.: The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere. Atm. Research 92, 1–17 (2009).

    Article  Google Scholar 

  23. Nieuwstadt F.T.M. and de Haan B.J.: An analytical solution of one-dimensional diffusion equation in a nonstationary boundary layer with an application to inversion rise fumigation. Atmos. Environ. 15, 845–851 (1981).

    Article  Google Scholar 

  24. Panofsky, A.H., Dutton, J.A.: Atmospheric Turbulence. John Wiley & Sons, New York (1988).

    Google Scholar 

  25. Rounds, W.: Solutions of the two-dimensional diffusion equation. Trans. Am. Geophys. Union 36, 395–405 (1955).

    Article  MathSciNet  Google Scholar 

  26. Seinfeld, J.H. and Pandis, S.N. (1998). Atmospheric chemistry and physics. John Wiley & Sons, New York, 1326 pp.

    Google Scholar 

  27. Sharan, M., Singh, M.P. and Yadav, A.K.: A mathematical model for the atmospheric dispersion in low winds with eddy diffusivities as linear functions of downwind distance. Atmos. Environ. 30, n.7, 1137–1145 (1996).

    Article  Google Scholar 

  28. Tirabassi, T.: Analytical air pollution and diffusion models. Water, Air and Soil Pollution 47, 19–24 (1989).

    Article  Google Scholar 

  29. Tirabassi T.: Operational advanced air pollution modeling. PAGEOPH 160, n. 1-2, 05–16 (2003).

    Article  Google Scholar 

  30. van Dop, H., Verver, G.S.: Countergradient transport revisited. J. Atm. Sci. 58, 2240–2247 (2001).

    Article  Google Scholar 

  31. Wyngaard, J.C. and Weil, J.C.: Transport asymmetry in skewed turbulence. Phys. Fluids A 3, 155–162 (1991).

    Article  MATH  Google Scholar 

  32. Wortmann, S., Vilhena, M.T., Moreira, D.M. and Buske, D.: A new analytical approach to simulate the pollutant dispersion in the PBL. Atm. Env. 39, 2171–2178 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq and FAPERGS for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Buske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Buske, D., Vilhena, M.T.B., Bodmann, B.E.J., Quadros, R.S., Tirabassi, T. (2015). Pollutant Dispersion in the Atmosphere: A Solution Considering Nonlocal Closure of Turbulent Diffusion. In: Constanda, C., Kirsch, A. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16727-5_9

Download citation

Publish with us

Policies and ethics