Skip to main content
Log in

Plasma protein regulation of platelet function and metabolism

  • Review Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

This reviews summarizes our evidence suggesting that the plasma protein environment influences platelet aggregation potential and metabolic activity.

Cationic proteins are capable of restoring the aggregation potential of washed human platelets. The aggregation restoring effect of gamma globulin is inhibited by more anionic proteins in subfractions of Cohn fraction IV and fractions V and VI. Artificial enhancement of the net negative charge of plasma proteins through acylation produces derivatives capable of inhibiting platelet aggregation in platelet rich plasma.

The oxygen consumption of washed human platelets is lower than in platelet rich plasma while the lactate production is identical. Autologous plasma, albumin or IgG immunoglobulin restores the oxygen consumption of washed platelets to values comparable to those obtained for platelet rich plasma, while the lactate production is unaffected. Fibrinogen or IgA myeloma protein increases the lactate production, but not the oxygen consumption. Cyclic AMP levels are considerably lower in washed platelets than in platelet rich plasma. Gamma globulin and albumin causes a further decrease, which is progressive with time. Fibrinogen causes no change in platelet cyclic AMP content.

It is suggested that these observations may in part be explained by the equilibrium between anionic and cationic proteins in the platelet microenvironment.

This hypothesis appears applicable in certain clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roskam, J., 1923. Contribution a l'étude de la physiologie normale et pathologique du globulin. Arch. Int. Physiol. 20, 241–330.

    Google Scholar 

  2. Bang, N. U., Heidenreich, R. O. and Matsuda, M., 1970. Plasma protein requirements for human platelet aggregation. In: Platelet Adhesion and Aggregation in Thrombosis: Countermeasures. Transactions of the Eighteenth Annual Symposium on Blood, Wayne State Univ. School of Medicine, Detroit, Mich. Jan. 16 and 17, 1970. Thromb. Diath. Haemorrh. (Stuttg.) 42, 37–48.

  3. Bang, N. U., Heidenreich, R. O. and Trygstad, C. W., 1972. Plasma protein requirements for human platelet aggregation. Ann. NY Acad. Sci. 201, 280–299.

    Google Scholar 

  4. Bang, N. U., Hansen, M. S. and Heidenreich, R. O., 1975. The influence of plasma proteins on platelet function and metabolism. Excerpta Med. 357, 118–126.

    Google Scholar 

  5. Bang, N. U., Trygstad, C. W., Schroeder, J. E., Heidenreich, R. O. and Csiscko, B. M., 1973. Enhanced platelet function in glomerular renal disease. J. Lab. Clin. Med. 81, 651–660.

    Google Scholar 

  6. Hansen, M. S. and Bang, N. U. The influence of plasma proteins on human platelet metabolism. Thromb. Res., in press.

  7. Trygstad, C. W., Bang, N. U., Heidenreich, R. O., Csiscko, B. M. and Rodda, B., 1973. A controlled trial of aspirin in childhood glomerular disorders. Thromb. Diath. Haemorrh. (Stuttg.) 30, 12–17.

    Google Scholar 

  8. Adelson, E., Rheingold, J. J. and Crosby, W. H., 1961. The platelet as a sponge: a review. Blood 17, 767–774.

    Google Scholar 

  9. Bezkorovainy, A. and Rafelson, Jr., M. E., 1964. Characterization of some proteins from normal human platelets. J. Lab. Clin. Med. 64, 212–225.

    Google Scholar 

  10. Bounameaux, Y., 1957. Dosage des facteurs de coagulation contenus dans l'atmosphere plasmatique des plaquettes humaines. Rev. Franc. Etud. Clin. Biol. 2, 52–63.

    Google Scholar 

  11. Deutsch, E., Johnson, S. A. and Seegers, W. H., 1955. Differentiation of certain platelet factors related to blood coagulation. Circ. Res. 3, 110–115.

    Google Scholar 

  12. Iatridis, P. G., Ferguson, J. H. and Iairidis, S. G., 1964. Surface factor mechsnisns in relation to blood platelets: evidence that activated Hageman factor is present on the surface of platelets. Thromb. Diath. Haemorrh. (Stuttg.) 11, 355–371.

    Google Scholar 

  13. Miletich, J. P., Jackson, C. M. and Majerus, P. W., 1977. Interaction of coagulation factor Xa with human platelets. Proc. Natl. Acad. Sci. USA, 79, 4033–4036.

    Google Scholar 

  14. Osterud, B., Rapaport, S. I. and Lavine, K., 1977. Factor V activity of platelets: evidence for an activated factor V molecule and for a platelet activator. Blood 49, 819–834.

    Google Scholar 

  15. Born, G. V. R. and Cross, M. J., 1964. Effects of inorganic ions and of plasma proteins on the aggregation of blood platelets by adenosine diphosphate. J. Physiol. (London) 170, 397–414.

    Google Scholar 

  16. Deykin, D. C., Pritzker, R. and Scolnick, M., 1965. Plasma co-factors in adenosine diphosphate induced aggregation of human platelets. Nature (London) 208, 296–298.

    Google Scholar 

  17. Gugler, E. and Luscher, E. F., 1965. Platelet function in congenital afibrinogenemia. Thromb. Diath. Haemorrh. (Stuttg.) 14, 361–373.

    Google Scholar 

  18. Inceman, S., Caen, J. and Bernard J., 1966. Aggregation, adhesion and viscous metamorphosis of platelets in congenital fibrinogen deficiencies. J. Lab. Clin. Med. 68, 21–32.

    Google Scholar 

  19. Larrieu, M., Faur, Y., Caen, J. and Bernard, J., 1965. Syndrome biologique de l'afibrinémie congénitale. Soc. Franc. d'Hématol. 5, 368–376.

    Google Scholar 

  20. Rodman, N. F., Jr., Mason, R. G., Painter, J. G. and Brinkhous, K. M., 1966. Fibrinogen — its role in platelet agglutination and agglutinate stability, a study of congential afibrinogenemia. Lab. Invest. 15, 641–656.

    Google Scholar 

  21. Weiss, H. J. and Rogers, J., 1971. Fibrinogen and platelets in the primary arrest of bleeding. Studies of two patients with congential afibrinogenemia. N Engl. J. Med. 285, 369–374.

    Google Scholar 

  22. Rock, R. C. and Nemerson, Y., 1969. Energetics of human blood platelets: uncoupling of oxidative phosphorylation in intact cells. J. Lab. Clin. Med. 73, 42–53.

    Google Scholar 

  23. Rossi, E. C., 1972. The effect of albumin upon the loss of enzymes from washed platelets. J. Lab. Clin. Med. 79, 240–246.

    Google Scholar 

  24. Doery, J. C. G., Hirsch, J. and Mustard, J. F., 1973. Energy metabolism in washed human platelets responsive to ADP: comparison with platelets in plasma. Brit. J. Haemat. 25, 657–673.

    Google Scholar 

  25. Bull, B. S., 1966. The ultrastructure of negatively stained platelets Some physiological implications. Blood. 28, 901–912.

    Google Scholar 

  26. Nicolson, G. L., 1973. The relationship of a fluid membrane structure to cell agglutination and surface topography. Ser. Haemat. 6, 275–291.

    Google Scholar 

  27. Hawiger, J. and Timmons, S., 1975. Human platelet membrane changes detected with fluorescent probe. The role of fibrinogen. Fed. Proc. 34, 281.

    Google Scholar 

  28. Pfueller, S. L., Weber, S. and Luscher, E. F., 1977. Studies of the mechanism of the human platelet release reaction induced by immunologic stimuli. III. Relationship between the binding of soluble IgG aggregates to the Fe receptor and cell response in the presence and absence of plasma. J. Immunology. 118, 514–524.

    Google Scholar 

  29. Carley, W. W., Moses, H. L. and Mitchell, W. M., 1976. The correlation of plasma membrane microvilli and intracellular cyclic AMP content in a rat epitheloid kidney cell line. J. Supramolecular Structure 5, 309–316.

    Google Scholar 

  30. Hashimoto, S., Shibata, S. and Kobayashi, B., 1975. Dependence of platelet adenyl cyclase system on oxidative phosphorylation. Thromb. Diath. Haemorrh. (Stuttg.) 34, 42–49.

    Google Scholar 

  31. Taylor, F. B. and Zucker, M. B., 1969. Prolonged clot lysis time and absence of platelet gamma M-globulin in patients with thrombasthenia. Nature (London) 222, 99.

    Google Scholar 

  32. Bang, N. U., 1967. Ultrastructure of the fibrin clot. In: Blood Clotting Enzymology, W. H. Seegers (Ed): p. 487–549. Academic Press, New York, New York.

    Google Scholar 

  33. White, R. H. R., Glasgow, E. F. and Mills, R. J., 1970. Clinicopathological study of nephrotic syndrome in childhood. Lancet 1, 1353–1358.

    Google Scholar 

  34. Trygstad, C. W. and Anand, S. K., 1972. Glomerulonephritis in childhood. Curr. Probl. Pediat. 2, 3–35.

    Google Scholar 

  35. Trygstad, C. W. and Bang, N. U. (Unpublished observations.)

  36. Kwaan, H. C., Colwell, J. A. and Cruz, S., 1972. Increased platelet aggregation in diabetes mellitus. J. Lab. Clin. Med. 80, 236–246.

    Google Scholar 

  37. Thomas, D. P., 1972. Abnormalities of platelet aggregation in cirrhosis. Ann. N.Y. Acad. Sci. 201, 243–253.

    Google Scholar 

  38. Nurden, A. T. and Caen, J. P., 1976. Role of surface glycoproteins in human platelet function. Thrombos. Haemostas. (Stuttg.) 35, 139–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, M.S., Bang, N.U. Plasma protein regulation of platelet function and metabolism. Mol Cell Biochem 24, 143–158 (1979). https://doi.org/10.1007/BF00220733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220733

Keywords

Navigation