Skip to main content
Log in

Melting and premelting of silicates: Raman spectroscopy and X-ray diffraction of Li2SiO3 and Na2SiO3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The isostructural lithium (Li2SiO3) and sodium (Na2SiO3) metasilicates have been investigated from room temperature up to the melting point by single-crystal Raman spectroscopy and energy-dispersive X-ray powder diffraction. The unit-cell parameters and Raman frequencies of Li2SiO3 vary regularly with temperature up to the melting point, which is consistent with the lack of premelting effects in calorimetric measurements. In contrast, Na2SiO3 undergoes a transition at about 850 K from orthorhombic Cmc 21 symmetry, to a lower symmetry (possibly Pmc 21), and shows near 1200 K changes in the Raman spectra that correlate well with the premelting effects as determined from calorimetry observations. In both compounds, a high alkali mobility likely sets in several hundreds of degrees below the melting point. Premelting in Na2SiO3 is associated with extensive deformation of the silicate chains as evidenced near the melting point by similarities in the Raman spectra of the crystalline and liquid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brawer SA (1975) Theory of the vibrational spectra of some network and molecular glasses. Phys Rev B 11:3173–3194

    Google Scholar 

  • Brawer SA, White WB (1975) Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates. J Chem Phys 63:2421–2432

    Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58: 594–618

    Google Scholar 

  • Devarajan V, Shurvell HF (1977) Vibrational spectra and normal coordinate analysis of crystalline lithium metasilicate. Can J Chem 55:2559–2563

    Google Scholar 

  • Dworkin AS, Bredig MA (1968) Diffuse transition and melting in fluorite and anti-fluorite type of compounds; heat content of potassium sulfide from 298 to 1260 °K. J Phys Chem 72: 1277–1281

    Google Scholar 

  • Farnan I, Stebbins JF (1990) High-temperature 29Si NMR investigation of solid and molten silicates. J Am Chem Soc 112:32–39

    Google Scholar 

  • Furukawa T, Fox KE, White WB (1981) Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J Chem Phys 75:3226–3237

    Google Scholar 

  • Gillet Ph, Riebet P, Guyot F, Fiquet G (1991) Anharmonicity and high-temperature thermodynamic properties of forsterite. J Geophys Res 96:11 805–11816

    Google Scholar 

  • Gillet Ph, Fiquet G, Malézieux JM, Geiger C (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Mineral 4:651–664

    Google Scholar 

  • Hatton WE, Hildebrand DL, Sinke GC, Stull DR (1959) Thermodynamic properties of KOH, K2CO3, K2Si2O5, Li2SiO3, Li2Si2O5, and Ca(OH)2. Thermal Lab, Dow Chemical USA Rep. SSR 249–954

  • Hesse KF (1977) Refinement of the crystal structure of lithium polysilicate. Acta Cryst B 33:901–902

    Google Scholar 

  • Kelley KK (1939) The specific heats at low temperatures of crystalline ortho, meta, and disilicates of sodium. J Am Chem Soc 61:471–473

    Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Rev Geophys Space Phys 20: 827–849

    Google Scholar 

  • Konijnendijk WL, Stevels JM (1976) Raman scattering measurements of silicate glasses and compounds. J Non-Cryst Solids 21:447–453

    Google Scholar 

  • Kracek FC (1930 a) The system sodium oxide-silica. J Phys Chem 34:1583–1598

    Google Scholar 

  • Kracek FC (1930 b) The binary system Li2O-SiO2. J Phys Chem 34:2641–2650

    Google Scholar 

  • Long DA (1977) Raman spectroscopy. McGraw Hill, New York, 277 pp

    Google Scholar 

  • McDonald WS, Cruickshank DWJ (1967) A reinvestigation of the structure of sodium metasilicate. Acta Cryst 22:37–43

    Google Scholar 

  • Matsuo T, Ohno H, Noda K, Konishi S, Yoshida H, Watanabe H (1983) Nuclear magnetic resonance investigation of lithium diffusion in Li2O, Li2SiO3 and LiAlO2. J Chem Soc Farad Trans 2, 79:1205–1216

    Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Elsevier, 354 pp

  • Mysen BO, Frantz JD (1992) Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-Si2, and binary compositions in the temperature range 25–1475 °C. Chem Geol 96:321–332

    Google Scholar 

  • Mysen BO, Frantz JD (1993) Structure and properties of alkali silicate melts at magmatic temperatures. Eur J Mineral 5:393–407

    Google Scholar 

  • Mysen BO, Frantz JD (1994) Alkali silicate glass and melt structure in the temperature range 25–1651 °C at atmospheric pressure and implications for the mixing behavior of structural units. Contrib Min Petr 117:1–14

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982 a) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys 20:353–383

    Google Scholar 

  • Mysen BO, Finger LW, Seifert FA, Virgo D (1982 b) Curve-fitting of Raman spectra of amorphous materials. Am Mineral 67:686–696

    Google Scholar 

  • Naylor BF (1946) High-temperature heat contents of sodium metasilicate and sodium disilicate. J Am Chem Soc 67:466–467

    Google Scholar 

  • Richet P, Fiquet G (1991) High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2. J Geophys Res 96:445–456

    Google Scholar 

  • Richet P, Bottinga Y, Téqui C (1984) Heat capacity of sodium silicate liquids. J Am Ceram Soc 67:C6-C8

    Google Scholar 

  • Richet P, Ingrin J, Mysen BO, Courtial P, Gillet Ph (1994) Premelting effects in minerals: an experimental study. Earth Planet Sci Lett 121:589–600

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Min Petr 86:131–148

    Google Scholar 

  • Téqui C, Grinspan P, Richet P (1992) Thermodynamic properties of alkali silicates: heat capacity of Li2SiO3 and lithium-bearing melts. J Am Ceram Soc 75:2601–2604

    Google Scholar 

  • Ubbelhode AR (1978) The molten state of matter. John Wiley and Sons, New York

    Google Scholar 

  • West AR (1977) Long-period superstructure in sodum-lithium metasilicates. Acta Cryst A 33:408–411

    Google Scholar 

  • White WB (1974) Order-disorder effects. In: The infrared spectra of minerals. Farmer VC (ed.), Mineralogical Society, London, p 87–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richet, P., Mysen, B.O. & Andrault, D. Melting and premelting of silicates: Raman spectroscopy and X-ray diffraction of Li2SiO3 and Na2SiO3 . Phys Chem Minerals 23, 157–172 (1996). https://doi.org/10.1007/BF00220727

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220727

Keywords

Navigation