Skip to main content
Log in

The pineal gland of equatorial mammals

I. The pinealocytes of the Malaysian rat (Rattus sabanus)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The ultrastructure of the pinealocytes of the Malaysian rat (Rattus sabanus), a mammal inhabiting a zone near the equator where the annual variations of daylength are inconspicuous, was examined and compared with that of pinealocytes of other mammals.

On the basis of the presence of granular vesicles, only one population of pinealocytes was found. A large number of granular vesicles and vesicle-crowned rodlets is characteristic of the pinealocytes of this equatorial species. Vesicle-crowned rodlets are especially numerous in the endings of the pinealocyte processes and; they most often found in direct topographical connection with the perivascular spaces.

The physiological significance of the presence of such large amounts of vesicle-crowned rodlets and of the secretory process characterized by the formation of granular vesicles is discussed.

Résumé

Les pinéalocytes d'un Rat de Malaisie (Rattus sabanus), un animal vivant près de l'équateur donc dans une zone où les variations annuelles de la longueur des jours sont minimes, examinés au microscope électronique ont été comparés à ceux d'autres Mammifères. Une seule population de pinéalocytes a été observée. La présence d'un grand nombre de vésicules granulaires et de rubans circonscrits par des vésicules est la caractéristique premi`ere des pinéalocytes de cette espèce. Les rubans circonscrits par des vésicules ont été plus spécialement observés dans les terminaisons des prolongements des pinéalocytes où ils sont nombreux et la plus souvent en contact directe avec l'espace périvasculaire.

L'importance physiologique de ces rubans circonscrits par des vésicules et des vésicules granulaires est discuté.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arstila AU (1967) Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Neuroendocrinology 2, suppl 6:1–101

    Google Scholar 

  • Collin JP (1968) Rubans circonscrits par des vésicules dans les photorécepteurs rudimentaires épiphysaires de l'Oiseau Vanellus vanellus L. et nouvelles considérations phylogénétiques relatives aux pinéalocytes (ou cellules principales) des Mammifères. C R Acad Sci 267:758–561

    Google Scholar 

  • Collin JP (1969) Contribution à l'étude de l'organe pinéal. De l'épiphyse sensorielle à la gland pinéale: modalités de transformation et implications fonctionelles. Ann Stat Biol De Besse-en-Chandesse, Suppl 1:1–359

    Google Scholar 

  • Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The Pineal Gland (a CIBA Symposium). Churchill Linvingstone, Edinburgh and London, pp 79–125

    Google Scholar 

  • Collin JP (1979) Recent advances in pineal cytochemistry. Evidence of the production of indoleamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of Amniota. In: Ariëns Kappers J, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Prog Brain Res, Elsevier, Amsterdam, Vol 52, pp 271–296

    Google Scholar 

  • Collin JP, Meiniel A (1971) L'organe pinéal. Etudes combinées ultrastructurales, cytochimiques (monoamines) et expérimentales, chez Testudo mauritanica L. Grains denses des cellules de la lignée “sensorielle” chez les Vertébrés. Arch Anat Microsc Morphol Exp 60:269–304

    Google Scholar 

  • Collin JP, Meiniel A (1972) L'organe pinéal du genre Lacerta (Reptile, Lacertilien): action d'enzymes protéolytiques sur les grain denses (500–3400 Å) des photorécepteurs rudimentaires. C R Soc Biol 166:2–3

    Google Scholar 

  • Collin JP, Meiniel A (1973) Métabolisme des indolamines dans l'organe pinéal de Lacerta (Reptiles, Lacertiliens). I. Intégration sélective de 5-HTP-3H (5-hydroxytryptophane-3H) et rétention de ses dérivés dans les photorécepteurs rudimentaires sécrétoires. Z Zellforsch 142:549–570

    Google Scholar 

  • Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4:191–194

    Google Scholar 

  • Harrison JL (1955) Data of some Malayan mammals. Proc Zool Soc Lond 125(2), 445–460

    Google Scholar 

  • Ito T, Matsushima S (1968) Electron microscopic observations on the mouse pineal with particular emphasis on its secretory nature. Arch Hist Jpn 30:1–15

    Google Scholar 

  • Juillard MT (1979) The proteinaceous content and possible physiological significance of dense-cored vesicles in hamster and mouse pinealocytes. Ann Biol Anim Bioch Biophys 19:413–428

    Google Scholar 

  • Juillard MT, Collin JP (1978) The avian pineal organ: evidence for a proteinaceous component in the secretion granules of the rudimentary photoreceptor cells. An ultracytochemical and pharmacological study in the parakeet. Biol Cellulaire 31:51–58

    Google Scholar 

  • Karasek M (1974) Ultrastructure of rat pineal gland in organ culture; influence of norepinephrine, dibutyryl cyclic adenosine 3–5-monophosphate and adenohypophysis. Endokrinologie 64(1): 106–114

    Google Scholar 

  • Karasek M (1976) Quantitative changes in number of “synaptic” ribbons in rat pinealocytes after orchidectomy and in organ culture. J Neural Transm 38:149–157

    Google Scholar 

  • Krstíc R (1976) Ultracytochemistry of the synaptic ribbons in the rat pineal organ. Cell Tissue Res 166:135–143

    Google Scholar 

  • Kurumado K, Mori W (1976) Synaptic ribbon in the human pinealocyte. Acta Pathol Jpn 26:381–384

    Google Scholar 

  • Lin HS, Hwang BH, Tseng CY (1975) Fine structural changes in the hamster pineal gland after blinding and superior cervical ganglionectomy. Cell Tissue Res 158:285–299

    Google Scholar 

  • Matsushima S, Morisawa Y, Petterborg LS, Zeagler JW, Reiter RJ (1979) Ultrastructure of pinealocytes of the cotton rat, Sigmodon hispidus. Cell Tissue Res 204:407–416

    Google Scholar 

  • McNeill ME, Whitehead DS (1979) The synaptic ribbons of the guinea pig pineal gland in sterile, pregnant and fertile but non-pregnant females and in reproductively active males. J Neural Transm 45:149–164

    Google Scholar 

  • Pellegrino de Iraldi A (1969) Granulated vesicles in the pineal gland of the mouse. Z Zellforsch 101:408–418

    Google Scholar 

  • Petit A (1971) L'épiphyse d'un serpent (Tropidonotus natrix, L.). I. Etude structurale et ultrastructurale. Z Zellforsch 120:94–119

    Google Scholar 

  • Petit A (1976) Contribution à l'étude de l'épiphyse des Reptiles: le complèxe épiphysaire des Lacertiliens et l'épiphyse des Ophidiens. Etude embryologique, structurale, ultrastructurale; analyse qualitative et quantitative de la sérotonin dans les conditions normales et expérimentales. Thesis, Strasbourg

  • Pévet P (1976) Correlations between pineal gland and sexual cycle. An electron microscopical and histochemical investigation on the pineal gland of the hedgehog, mole, mole-rat and white rat. Thesis, Amsterdam

  • Pévet P (1977) The pineal gland of the mole (Talpa europaea L.). IV. Effect of pronase on material present in cisternae of the granular endoplasmic reticulum of pinealocytes. Cell Tissue Res 182:215–219

    Google Scholar 

  • Pévet P (1979) Secretory processes in the mammalian pinealocyte under natural and experimental conditions. In: Ariëns Kappers J, Pévet P (eds). The Pineal Gland of Vertebrates including Man. Prog Brain Res, Vol. 52, pp 149–194, Elsevier, Amsterdam

    Google Scholar 

  • Pévet P (1980) Ultrastructure of the mammalian pinealocytes. In: Reiter JR (ed) The Pineal: Anatomy and Biochemistry. CRC Press, Palm Beach, USA (in press)

    Google Scholar 

  • Pévet P, Kuyper MA (1978) The ultrastructure of pinealocytes in the golden mole (Amblysomus hottentottus) with special reference to the granular vesicles. Cell Tissue Res 191:39–56

    Google Scholar 

  • Ralph CL (1975) The pineal gland and geographical distribution of animals. Int J Biometeorol 19:289–303

    Google Scholar 

  • Reiter PJ (1973) Pineal control of a seasonal reproductive rhythm in male golden hamsters exposed to natural daylight and temperature. Endocrinology 92(2): 423–430

    Google Scholar 

  • Reiter RJ (1974) Evidence for a seasonal rhythm in the pineal gland function: In: Scheving LE, Halberg F, Pauly JP (eds) “Chronobiology”. Igaku Shoin, Ltd Tokyo, pp 155–159

    Google Scholar 

  • Reiter RJ (1978) The Pineal and Reproduction. Karger, Basel

    Google Scholar 

  • Renold A (1970) Insulin biosynthesis and secretion. A still unsettled topic. New Engl J Med 282:173–182

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Roux M, Richoux JP, Cordonnier JL (1977) Influence de la photopériode sur l'ultrastructure de l'épiphyse avant et pendant la phase génitale saisonnière chez la femelle du Lérot (Eliomys quercinus). J Neural Transm 41:209–223

    Google Scholar 

  • Semm P, Vollrath L (1979a) Electrophysiology of the guinea pig pineal organ: sympathetically influenced cells responding differently to light and darkness. Neurosci Letters 12:93–96

    Google Scholar 

  • Semm P, Vollrath L (1979b) Electrophysiology of the guinea pig pineal organ: sympathetic influence and different reactions to light and darkness. In: Ariëns Kappers J, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Progr Brain Res, Elsevier, Amsterdam, Vol 52, pp 107–111

    Google Scholar 

  • Sheridan MN (1974) Pineal gland fine structure. In: Brain-endocrine Interactions, Vol 2, (The Ventricular System) 2nd Int Symp, Shizuoka, pp 324–336

  • Sheridan MN, Reiter RJ (1968) The fine structure of the hamster pineal gland. Am J Anat 122:357–376

    Google Scholar 

  • Ueck M, Wake K (1979) The pinealocyte — a paraneuron. In: Ariëns Kappers J, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Prog Brain Res, Elsevier, Amsterdam, Vol 52, pp 141–147

    Google Scholar 

  • Upson RH, Benson B (1977) Effects of blinding on the ultrastructure of mouse pinealocytes with particular emphasis on the dense-cored vesicles. Cell Tissue Res 183:491–498

    Google Scholar 

  • Upson RH, Benson B, Satterfield V (1976) Quantification of ultrastructural changes in the mouse pineal in response to continuous illumination. Anat Rec 184:311–324

    Google Scholar 

  • Venable JM, Coggeshall W (1965) Simplified lead stain for use in electron microscopy. J Cell Biol 25:407–408

    Article  CAS  PubMed  Google Scholar 

  • Vivien-Roels B (1976) L'épiphyse des Chéloniens. Etude embryologique structurale, ultrastructurale; analyse qualitative et quantitative de la sérotonine dans des conditions normales et expérimentales. Thesis, University of Strasbourg

  • Vollrath L (1973) Synaptic ribbons of a mammalian pineal gland-circadian changes. Z Zellforsch 145:171–183

    Google Scholar 

  • Vollrath L (1979) Comparative morphology of the vertebrate pineal complex. In: Ariëns Kappers J, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Prog Brain Res, Elsevier, Amsterdam, Vol 52, pp 25–38

    Google Scholar 

  • Vollrath L, Huss H (1973) The synaptic ribbons of the guinea pig pineal gland under normal and experimental conditions. Z Zellforsch 139:417–429

    Google Scholar 

  • Welsh MG, Reiter RJ (1968) The pineal gland of the gerbil, Meriones unguiculatus, I. An ultrastructural study. Cell Tissue Res 193:323–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pévet, P., Yadav, M. The pineal gland of equatorial mammals. Cell Tissue Res. 210, 417–433 (1980). https://doi.org/10.1007/BF00220199

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220199

Key words

Navigation