Skip to main content
Log in

Simulander: A neural network model for the orientation movement of salamanders

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Simulander is a feedforward neural network simulating the orientation movement of salamanders. The orientation movement is part of the prey capture behavior; it is performed with the head alone. Simulander is a network which consists of 300 neurons incorporating several cytoarchitectonic and electrophysiological features of the salamander brain. The network is trained by means of an evolution strategy. Although only 100 tectum neurons with fairly large receptive fields are used (“coarse coding”), Simulander is able to localize an irregularly moving prey precisely. It is demonstrated that large receptive field neurons are important for successful prey localization. The removal of a model tectum hemisphere leads to a network which accounts for investigations made in living monocular salamanders. The model also yields an understanding of electrical stimulation experiments in toads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib MA (1989) Interacting subsystems for depth perception and detour behavior. In: Arbib MA, Amari S-I (eds) Dynamic interactions in neural networks: models and data. Springer, New York, pp 123–151

    Google Scholar 

  • Arbib MA, Cobas A (1991) Schemas for prey catching in frog and toad. In: Meyer J-A, Wilson SW (eds) From animals to animals. The MIT Press, Cambridge MA, pp 142–151

    Google Scholar 

  • Bäck T, Hoffmeister F, Schwefel H-P (1991) A survey of evolution strategies. In: Belew R, Booker L (eds) Proceedings of the fourth international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 2–9

    Google Scholar 

  • Baldi P, Heiligenberg W (1988) How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol Cybern 59: 313–318

    Google Scholar 

  • Dicke U (1992) Neuroanatomische Untersuchungen zum Aufbau und zur Entwicklung der cervicospinalen Motornuclei und ihrer Verknüpfung mit den visuellen Zentren bei Salamandern. Thesis, Universität Bremen

  • Ewert J-P (1967) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirneizung. Z vergl Physiol 54: 455–481

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: Prey catching in toads. Behav Brain Sci 10: 337–405

    Google Scholar 

  • Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 211–245

    Google Scholar 

  • Heiligenberg W (1987) Central processing of sensory information in electric fish. J Comp Physiol A 161: 621–631

    Google Scholar 

  • House D (1989) Depth perception in frogs and toads (Lecture Notes in Biomathematics 80). Springer, New York

    Google Scholar 

  • Jordan M, Matsushima T, Roth G (1990) Does the toad's tectum have a motor map? In: Elsner N, Roth G (eds) Brain-perception-cognition. G Thieme, Stuttgart New York, poster 86

    Google Scholar 

  • Matsushima T, Roth G (1990) Fast excitatory action of optic tectum on tongue motoneurons in the tongue-projecting salamander Hydromantes italicus. In: Elsner N, Roth G (eds) Brain-perception-cognition. G Thieme, Stuttgart New York, poster 87

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1989) Medullary reticular neurons in the Japanese toad: morphologies and excitatory inputs from the optic tectum. J Comp Physiol A 166: 7–22

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie. Friedrich Frommann, Stuttgart

    Google Scholar 

  • Rettig G, Roth G (1986) Retinofugal projections in salamanders of the family Plethodontidae. Cell Tissue Res 243: 385–396

    Google Scholar 

  • Roth G (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). J Comp Physiol 109: 47–58

    Google Scholar 

  • Roth G (1987) Visual behavior in salamanders. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roth G, Nishikawa K, Dicke U, Wake D (1988) Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders. J Comp Neurol 278: 181–194

    Google Scholar 

  • Straub A (1993) Mathematische Modelle für das visuomotorische Verhalten von Amphibien. Thesis, Universität Bremen

  • Wake D, Nishikawa K, Dicke U, Roth G (1988) Organization of the motor nuclei in cervical spinal cord of salamanders. J Comp Neurol 278: 195–208

    Google Scholar 

  • Wiggers W (1991) Elektrophysiologische, neuroanatomische und verhaltensphysiologische Untersuchungen zur visuellen Verhaltenssteuerung bei lungenlosen Salamandern. Thesis, Universität Bremen

  • Wiggers W, Roth G, Eurich C, Straub A (1995) Biocular depth perception mechanisms in tongue-projecting salamanders. J Comp Physiol A 176: 365–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eurich, C., Roth, G., Schwegler, H. et al. Simulander: A neural network model for the orientation movement of salamanders. J Comp Physiol A 176, 379–389 (1995). https://doi.org/10.1007/BF00219063

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219063

Key words

Navigation