Skip to main content
Log in

Peripheral and central nervous responses evoked by small water movements in a cephalopod

  • Review Article
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Potentials were recorded from the epidermal head lines and from the CNS of young cuttlefish, Sepia officinalis, in response to weak water movements.

  1. 1.

    Within the test range 0.5–400 Hz a sinusoidal water movement elicits up to 4 components of response if the electrode is placed on a headline: (i) a positive phasic ON response; (ii) a tonic frequency-following microphonic response; (iii) a slow negative OFF response (Figs. 2, 5, 7A, 8, 11); and (iv) compound nerve impulses (Figs. 3A, 7B).

  2. 2.

    The amplitude of both the ON wave and the microphonic potential depends on stimulus frequency, stimulus amplitude and stimulus rise time (Figs. 4C, 6). Frequencies around 100 Hz and short rise times are most effective in eliciting strong potentials. The minimal threshold was 0.06 μm peak-to-peak water displacement at 100 Hz (18.8 μm/s as velocity).

  3. 3.

    Change of direction of tangential sphere movement (parallel vs. across the head lines) has only a small effect on the microphonic and the summed nerve potentials (Fig. 7).

  4. 4.

    Frequency and/or amplitude modulations of a carrier stimulus elicit responses at the onset and offset of the modulation and marked changes in the tonic microphonic response (Figs. 8, 9, 10, 11).

  5. 5.

    Evoked potentials can be recorded from the brain while stimulating the epidermal lines with weak water movements. The brain potentials differ in several aspects from the potentials of the head lines and show little or no onset or offset wave at the transitions of a frequency and amplitude modulation (Fig. 12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM :

amplitude modulation

FM :

Frequency modulation

p-p :

peak-to-peak

References

  • Baglioni S (1910) Zur Kenntnis der Leistungen einiger Sinnesorgane (Gesichtssinn, Tastsinn und Geruchssinn) und des Zentralnervensystems der Zephalopoden und Fische. Z Biol 53:255–286

    Google Scholar 

  • Békésy G von (1960) Experiments in hearing, McGraw Hill Book Co., New York

    Google Scholar 

  • Boston JR (1976) The AC- and DC-components in lateral line microphonic potentials. J Acoust Soc Am 60:656–664

    Google Scholar 

  • Budelmann BU (1989) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 607–632

    Google Scholar 

  • Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol A 163:1–5

    Google Scholar 

  • Bullock TH (1973) An essay on the discovery of sensory receptors and the assignment of their functions together with an introduction to electoreceptors. In: Fessard A (ed) (Handbook of sensory physiology, vol. III/3). Springer, Berlin Heidelberg New York, pp 1–12

    Google Scholar 

  • Bullock TH, Budelmann BU 1991 Sensory evoked potentials in unanesthetized unrestrained cuttlefish: a new preparation for brain physiology in cephalopods. J Comp Physiol A (in press)

  • Dijkgraaf S (1962) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    Google Scholar 

  • Flock Å (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol 199:1–90

    Google Scholar 

  • Flock Å, Russell IJ (1973) The postsynaptic action of efferent fibres in the lateral line organs of the burbot Lota lota. J Physiol 235:591–605

    Google Scholar 

  • Flock Å, Russell IJ (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol 257:45–62

    Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). J Comp Physiol 47:316–338

    Google Scholar 

  • Hanlon RT, Budelmann BU (1987) Why cephalopods are probably not deaf. Am Nat 129:312–317

    Google Scholar 

  • Harris GG, Bergeijk WA van (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Google Scholar 

  • Jielof R, Spoor A, Vries HL de (1952) The microphonic activity of the lateral line. J Physiol 116:137–157

    Google Scholar 

  • Josephson RK (1961) The response of a hydroid to weak water borne disturbances. J Exp Biol 38:17–27

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection in elasmobranch and teleost fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 83–130

    Google Scholar 

  • Kroese ABA, Zahn JM, Bercken J van den (1980) Extracellular receptor potentials from the lateral-line organ of Xenopus laevis. J Exp Biol 86:63–77

    Google Scholar 

  • Kuiper JW (1967) Frequency characteristics and functional significance of the lateral line organ. In: Cahn (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 105–121

    Google Scholar 

  • Müller U (1983) Anatomische und physiologische Anpassungen des Seitenliniensystems von Pantodon buchhohl an den Lebensraum Wasseroberfläche. Thesis, Universität Gießen, FRG

    Google Scholar 

  • Naef A (1928) Die Cephalopoden. Embryologie. Fauna Flora Golf Neapel 35:1–137

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Google Scholar 

  • Packard A, Karlsen HE, Sand O (1990) Low frequency hearing in cephalopods. J Comp Physiol A 166:501–505

    Google Scholar 

  • Russell IJ, Löwe DA (1983) The effect of efferent stimulation on the phase and amplitude of extracellular receptor potentials in the lateral line system of the perch (Perca fluviatilis). J Exp Biol 102:223–238

    Google Scholar 

  • Sundermann G (1983) The fine structure of epidermal lines on arms and head of postembryonic Sepia officinalis and Loligo vulgaris (Mollusca, Cephalopoda). Cell Tissue Res 232:669–677

    Google Scholar 

  • Sundermann-Meister G (1978) Ein neuer Typ von Cilienzellen in der Haut von spätembryonalen und juvenilen Loligo vulgaris (Mollusca, Cephalopoda). Zool Jahrb Abt Anat Ontog Tiere 99:493–499

    Google Scholar 

  • Unbehauen H (1980) Morphologische und elektrophysiologische Untersuchungen zur Wirkung von Wasserwellen auf das Seitenlinienorgan des Streifenhechtlings (Aplocheilus lineatus). Thesis, Universität Tübingen, FRG

    Google Scholar 

  • Vries HL de (1948) Die Reizschwelle der Sinnesorgane als physiologisches Problem. Experientia 4:205–240

    Google Scholar 

  • Williamson R (1990) The responses of primary and secondary sensory hair cells in the squid statocyst to mechanical stimulation. J Comp Physiol A 167:655–664

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleckmann, H., Budelmann, B.U. & Bullock, T.H. Peripheral and central nervous responses evoked by small water movements in a cephalopod. J Comp Physiol A 168, 247–257 (1991). https://doi.org/10.1007/BF00218417

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218417

Key words

Navigation