Skip to main content
Log in

Afferent connections of physiologically identified neuronal complexes in the paraventricular nucleus of conscious Pekin ducks involved in regulation of salt- and water-balance

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The afferent connections of the paraventricular nucleus (PVN) of the domestic mallard (Pekin duck), Anas platyrhynchos, were demonstrated by means of microiontophoretic injection of horseradish peroxidase (HRP). To place the HRP injection exactly into the PVN, its location was identified prior to the injection by observing antidiuretic reactions to electrostimulations within the rostral hypothalamus of conscious, hydrated animals. Antidiuresis was induced only when electrostimulation was applied to a distinct hypothalamic area. Two different patterns of antidiuresis were observed: (i) an immediate reduction in rate of production of urine, and (ii) antidiuresis preceded by a period of increase in production of urine. Repeated stimulation of the same site with the same parameters resulted in decreasing antidiuretic effects. At the site where stimulation had elicited the most pronounced antidiuresis of either response type, HRP was injected microiontophoretically.

Histological examination after 3–8 days of survival revealed delicate injection sites located exclusively in the periventricular portion of the PVN. Adjacent to the dorsal portion of the PVN retrogradely labeled tanycytes and intraependymal neurons were scattered in the ventricular wall. As demonstrated in neurohistological and electron-microscopic investigations, this ependymal region exhibits a particular arrangement of tanycytes and small neurons (10–15 μm in diameter), some of which belong to the neurosecretory type.

Additional HRP-labeled neuronal perikarya afferent to the PVN were demonstrated in the contralateral PVN, and on the ipsilateral side in the lateral septum, lateral hypothalamic area and locus coeruleus. Within the nuclei of the solitary tract, stained nerve cells were found ipsilateral as well as contralateral to the injection site.

Several of the neurons demonstrated may be considered as candidates for the transmission of signals originating from various receptive structures relevant for the control of avian salt- and water-balance. The physiological results conform to the concept that neurons of the PVN influence urine formation by controlling the release of arginine-vasotocin (AVT). Evidence that suggests additional modes of control exerted by these neurons in salt- and water-balance is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acher R (1981) Evolution of neuropeptides. TINS September 1981:225–229

    Google Scholar 

  • Ames E, Steven K, Skadhauge E (1971) Effects of arginine-vasotocin on renal excretion of Na+, K+, Cl-, and urea in the hydrated chicken. Am J Physiol 221:1223–1228

    Google Scholar 

  • Andersson B (1977) Regulation of body fluids. Annu Rev Physiol 39:185–200

    Google Scholar 

  • Andersson B, Olsson K (1973) On central control of body fluid homeostasis. Cond Reflex 8:147–159

    Google Scholar 

  • Andersson B, Olsson K (1977) Evidence for periventricular sodium-sensitive receptors of importance in the regulation of ADH secretion. In: Moses AM, Share L (eds) Neurohypophysis. Karger, Basel, pp 118–127

    Google Scholar 

  • Bello-Reuss E, Trevino DL, Gottschalk CW (1976) Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest 57:1104–1107

    Google Scholar 

  • Bencsath P, Asztalos B, Szalay L, Takacs L (1979) Renal handling of sodium after chronic renal sympathectomy in the unanaesthetized rat. Am J Physiol 236F:513–518

    Google Scholar 

  • Berlind A (1977) Cellular dynamics in invertebrate neurosecretory systems. Int Rev Cytol 49:172–251

    Google Scholar 

  • Berlind A, Maddrell SHP (1979) Changes in hormone activity of single neurosecretory cell bodies during a physiological secretion cycle. Brain Res 161:459–467

    Google Scholar 

  • Blähser S, Simon E (1977) Immunocytochemical studies on vasotocinergic and mesotocinergic neurons in the hypothalamus of osmotically stressed domestic mallards. Abstr 9th Conf Europ Comp Endocrinol, Giessen, p 12

  • Blähser S, Fellmann D, Bugnon C (1978) Immunocytochemical demonstration of somatostatin-containing neurons in the hypothalamus of the domestic mallard. Cell Tissue Res 195:183–187

    Google Scholar 

  • Bons N (1980) The topography of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail. Cell Tissue Res 213:37–51

    Google Scholar 

  • Crosby EC, Showers MJC (1969) Comparative anatomy of the preoptic and hypothalamic areas. In: Haymaker W, Anderson E, Nauta WJH (eds) The Hypothalamus. Charles C Thomas, Springfield, pp 61–135

    Google Scholar 

  • Cross BA (1973) Unit responses in the hypothalamus. In: Martin L, Ganong WF (eds) Frontiers in neuroendocrinology. Oxford Univ Press, New York, pp 5–54

    Google Scholar 

  • Cross BA, Dyball REJ, Dyer RG, Jones CW, Lincoln DW, Morris JF, Pickering BT (1975) Endocrine neurons. Recent Prog Horm Res 31:243–294

    Google Scholar 

  • Dellmann HD, Simpson JB (1974) Comparative ultrastructure and function of the subfornical organ. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-Endocrine Interaction II. Karger, Basel, pp 166–189

    Google Scholar 

  • Deutsch H, Simon E (1980) Intracerebroventricular osmosensitivity in the Peckin duck. Pfluegers Arch 387:1–7

    Google Scholar 

  • Dogterom J, Wimersma-Greidanus TB van, Swaab DF (1977) Evidence for the release of vasopressin and oxytocin into the cerebrospinal fluid: measurements in plasma and CSF in intact and hypophysectomized rats. Neuroendocrinology 24:108–118

    Google Scholar 

  • Ebbesson SOE, Hansel M, Scheich H (1981) An “on the slide” modification of the De Olmos-Heimer HRP method. Neurosci Lett 22:1–4

    Google Scholar 

  • Fuxe K, Hökfelt T (1967) The influence of central catecholamine neurons on the hormone secretion from the anterior and posterior pituitary. In: Stutinsky F (ed) Neurosecretion. IV Int Symp Neurosecretion. Springer, Berlin Heidelberg New York, pp 165–177

    Google Scholar 

  • Fuxe K, Ljunggren L (1965) Cellular localization of monoamines in the upper brainstem of the pigeon. J Comp Neurol 125:355–382

    Google Scholar 

  • Gauer OH, Henry JP (1976) Neurohormonal control of plasma volume. Int Rev Physiol II 9:175–190

    Google Scholar 

  • Gerstberger R, Gray D, Simon E (1982) The effects of intracerebroventricularly applied angiotensin on renal and plasma AVT. Pfluegers Arch 392 (Suppl):R13

    Google Scholar 

  • Goossens N, Blähser S, Oksche A, Vandesande F, Dierickx K (1977) Immunocytochemical investigations of the hypothalamo-neurohypophysial system in birds. Cell Tissue Res 184:1–13

    Google Scholar 

  • Hammel HT, Simon-Oppermann Ch, Simon E (1980) Properties of body fluids influencing salt gland secretion in Pekin ducks. Am J Physiol 239:R489–496

    Google Scholar 

  • Hayward JN (1977) Functional and morphological aspects of hypothalamic neurons. Physiol Rev 57:574–658

    Google Scholar 

  • Hayward JN, Jennings DP (1973) Osmosensitivity of hypothalamic neuroendocrine cells to intracarotid hypertonic D-glucose in the waking monkey. Brain Res 57:467–472

    Google Scholar 

  • Hayward JN, Reaves TA Jr (1980) The “endocrine” brain: Electrophysiological aspects. In: Motta M (ed) The endocrine functions of the brain. Raven Press, New York, pp 21–41

    Google Scholar 

  • Hayward JN, Vincent JD (1970) Osmosensitive single neurones in the hypothalamus of unanaesthetized monkeys. J Physiol (Lond) 210:947–972

    Google Scholar 

  • Hillman PE, Scott NR, Tienhoven van A (1977) Impact of centrally applied biogenic amines upon the energy balance of fowl. Am J Physiol 232:R137–144

    Google Scholar 

  • Hinckel P, Schröder-Rosenstock K (1981) Responses of pontine units to skin temperature changes in the guinea pig. J Physiol (London) 314:189–194

    Google Scholar 

  • Hissa R, Pyörnilä A (1977) Effect of intrahypothalamic phentolamine on hypothermia produced by peripheral noradrenaline in the pigeon. Br J Pharmacol 61:163–166

    Google Scholar 

  • Horstmann E (1954) Die Faserglia des Selachiergehirns. Z Zellforsch 39:588–716

    Google Scholar 

  • Kandel E (1964) Electrical properties of hypothalamic neuroendocrine cells. J Gen Physiol 47:691–717

    Google Scholar 

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. John Hopkins Press, Baltimore, pp 1–193

    Google Scholar 

  • Kobayashi H, Uemura H, Wada M, Takei Y (1977) Angiotensin and drinking behavior. Abstr 9th Conf Europ Endocrinol, Giessen

  • Korf HW, Simon-Oppermann Ch, Simon E (1981 a) Osmoregulatory responses of conscious Pekin ducks to electrostimulation in the paraventricular nucleus with subsequent demonstration of its afferent connections. Pfluegers Arch 389 (Suppl):R44

    Google Scholar 

  • Korf HW, Nürnberger F, Simon-Oppermann Ch, Simon E (1981 b) Zu den Afferenzen des Nucl. paraventricularis. Studien bei der Pekingente. Verh Anat Ges (in press)

  • Korf HW, Zimmerman NH, Oksche A (1982) Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res 222:243–260

    Google Scholar 

  • Kuhlenbeck H (1977) The central nervous system of vertebrates. Derivatives of the prosencephalon, diencephalon and telencephalon, Vol 5, Part I. Karger, Basel, pp 1–888

    Google Scholar 

  • Legait H (1959) Contribution a l'étude morphologique et experimentale du systeme hypothalamoneurohypophysaire de la poule Rhode Island. Thèse Louvain. Soc d'Impression Typographique, Nancy

    Google Scholar 

  • Leng G, Mason WT, Dyer RG (1982) The supraoptic nucleus as an osmoreceptor. Neuroendocrinology 34:75–82

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A (ed) Neuroglia I. Hdbh Mikr Anat Mensch, Vol IV/10. Springer, Berlin Heidelberg New York, pp 177–666

    Google Scholar 

  • Léranth Cs, Záborsky L, Marton J, Palkovits M (1975) Quantitative studies on the supraoptic nucleus in the rat. I. Synaptic organization. Exp Brain Res 22:509–523

    Google Scholar 

  • Luiten PGM, Room P, Lohman AHM (1980) Ependymal tanycytes projecting to the ventromedial hypothalamic nucleus as demonstrated by retrograde and anterograde transport of HRP. Brain Res 193:539–542

    Google Scholar 

  • Malmgren L, Olsson Y (1978) A sensitive method for histochemical demonstration of horseradish peroxidase following retrograde axonal transport. Brain Res 148:279–294

    Google Scholar 

  • McKelvy JF, Charli JL, Joseph-Bravo P, Sherman T, Loudes C (1980) Cellular biochemistry of brain peptides: biosynthesis, degradation, packaging, transport, and release. In: Motta M (ed) The endocrine functions of the brain. Raven Press, New York, pp 171–193

    Google Scholar 

  • McNeill TH, Abel JH, Kozlowski GP (1975) Correlation between brain catecholamines, neurosecretion and serum corticoid levels in osmotically stressed mallard ducks (Anas platyrhynchos). Cell Tissue Res 161:277–283

    Google Scholar 

  • Miselis RP (1981) The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res 230:1–24

    Google Scholar 

  • Möhring J, Schoun J, Simon-Oppermann Ch, Simon E (1980) Radioimmunoassay for arginine-vasotocin (AVT) in serum of Pekin ducks: AVT concentrations after adaptation to fresh and salt water. Pfluegers Arch 387:91–97

    Google Scholar 

  • Möller W (1976) Paraffinum liquidum in einer Intermediumkombination für die Paraffineinbettung. Mikroskopie 32:100–104

    Google Scholar 

  • Navar LG, Bell PD, Adams PL (1981) Macula densa feedback regulation of renal hemodynamics and renal autoregulation. In: Takacs L (ed) Kidney and body fluids. Adv Physiol Sci, Vol 11. Pergamon Press, Oxford, pp 205–215

    Google Scholar 

  • Oksche A (1976) The neuroanatomical basis of comparative endocrinology. Gen Comp Endocrinol 29:225–239

    Google Scholar 

  • Oksche A (1978) Pattern of neuroendocrine cell complexes (subunits) in hypothalamic nuclei: neurobiological and phylogenetic concepts. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 64–71

    Google Scholar 

  • Oksche A (1982) Neuronal systems and hypothalamic control. J Thermobiol (in press)

  • Oksche A, Farner DS (1974) Neurohistological studies of the hypothalamo-hypophysial system of Zonotrichia leucophrys gambelii (Aves, Passeriformes). Adv Anat Embryol Cell Biol 48:1–136

    Google Scholar 

  • Oksche A, Hartwig HG (1980) Structural principles of central neuroendocrine systems. In: Epple A, Stetson MH (eds) Avian endocrinology. Academic Press, New York, pp 75–84

    Google Scholar 

  • Oksche A, Zimmermann P, Oehmke HJ (1972) Morphometric studies of tubero-eminential systems controlling reproductive functions. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: Structure and function. Karger, Basel, pp 142–153

    Google Scholar 

  • Olsson K (1973) Further evidence for the importance of CSF Na+ concentration in central control of fluid balance. Acta Physiol Scand 88:183–188

    Google Scholar 

  • Perlmutt JH (1964) Effect of vagotomy on renal function during water diuresis. Proc Soc Exp Biol Med 116:270–273

    Google Scholar 

  • Pittman QJ, Blume HW, Renaud LP (1981) Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: An electrophysiological study in the rat. Brain Res 215:15–28

    Google Scholar 

  • Reinhold C, Hartwig HG (1981) Fortschritte in der mikrofluorometrischen Analyse aminhaltiger Terminalformationen im neuroendokrinen Hypothalamus. I. Erweiterung des spektralen Anwendungsbereiches. Verh Anat Ges 75:783–784

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenbourg München Wien

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic area of the rat, cat, and monkey. J Comp Neurol 182:575–600

    Google Scholar 

  • Share L (1974) Blood pressure, blood volume and the release of vasopressin. Hdbk Physiol, Sect 7, Vol IV. Amer Physiol Soc, Washington DC, pp 243–255

    Google Scholar 

  • Sladek CD, Knigge KM (1977) Osmotic control of vasopressin release by the organ cultured rat hypothalamo-hypophysial system. Endocrinology 101:1834–1838

    Google Scholar 

  • Sharp PJ (1972) Tanycyte and vascular patterns in the basal hypothalamus of Coturnix quail with reference to their possible neuroendocrine significance. Z Zellforsch 127:552–569

    Google Scholar 

  • Sharp PJ, Follett BK (1970) The adrenergic supply within the avian hypothalamus. In: Bargmann W, Scharrer B (eds) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, pp 95–103

    Google Scholar 

  • Silverman AJ, Hoffman DL, Zimmerman EA (1981) The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 6:47–61

    Google Scholar 

  • Simon E (1982) The osmoregulatory system of birds with salt glands. Comp Biochem Physiol A 71:547–556

    Google Scholar 

  • Simon-Oppermann Ch, Gray D, Szczepanska-Sadowska E, Simon E (1982) Volume induced, concomitant changes of serum AVT and urine formation in conscious ducks. Pfluegers Arch 392 (Suppl):R13

    Google Scholar 

  • Simon-Oppermann Ch, Simon E (1982) Osmotic and volume control of diuresis in conscious ducks. J Comp Physiol (in press)

  • Simon-Oppermann Ch, Simon E, Deutsch H, Möhring J, Schoun J (1980) Serum arginine-vasotocin (AVT) and afferent and central control of osmoregulation in conscious Pekin ducks. Pfluegers Arch 387:99–106

    Google Scholar 

  • Simpson JB (1981) Circumventricular organs and the central action of angiotensin. Neuroendocrinology 32:248–256

    Google Scholar 

  • Sundstein JW, Sawyer CH (1961) Osmotic activation of neurohypophysial hormone release in rabbits with hypothalamic islands. Exp Neurol 4:548–561

    Google Scholar 

  • Valiquette G (1980) Posterior pituitary hormones and neurophysins. In: Motta M (ed) The endocrine functions of the brain. Raven Press, New York, pp 385–417

    Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc Roy Soc 135:25–106

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1973) Comparative ultrastructure of the CSF-contacting neurons. Int Rev Cytol 35:189–251

    Google Scholar 

  • Viglietti-Panzica C, Panzica GC (1981) The hypothalamic magnocellular system in the domestic fowl. A Golgi and electron microscopic study. Cell Tissue Res 215:113–131

    Google Scholar 

  • Wayner MJ, Barone FC, Scharoun SL, Guevara-Aguilar R, Aguilar-Baturoni HU (1980) Lateral preoptic area and lateral hypothalamic interconnections demonstrated by horseradish peroxidase. Brain Res Bull 5:181–188

    Google Scholar 

  • Weitzman RE, Glatz TH, Fisher DA (1978) The effect of hemorrhage and hypertonic saline upon plasma oxytocin and arginine vasopressin in conscious dogs. Endocrinology 103:2154–2160

    Google Scholar 

  • Wittkowski W (1980) Glia der Neurohypophyse. In: Oksche A (ed) Hdbh Mikr Anat Mensch, Vol IV/10. Neuroglia I, pp 667–756

  • Woods JW, Bard P, Bleir R (1966) Functional capacity of the deafferented hypothalamus: water balance and responses to osmotic stimuli in decerebrated cat and rat. J Neurophysiol 29:751–767

    Google Scholar 

  • Yamashita H, Koizumi K, McBrooks C (1970) Electrophysiological studies on neurosecretory cells in the cat hypothalamus. Brain Res 20:462–466

    Google Scholar 

  • Záborsky L, Léranth Cs, Makara GB, Palkovits M (1975) Quantitative studies on the supraoptic nucleus in the rat. II. Afferent fiber connections. Exp Brain Res 22:525–540

    Google Scholar 

  • Zeisberger E, Behr R, Ewen K, Merker G (1982) Threshold changes for heat production and dissipation after intrahypothalamic administration of 6-hydroxydopamine. J Thermobiol (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Deutsche Forschungsgemeinschaft (Ko 758/1; Si 230/4-4)

Portions of these results were presented on the occasion of the 54th Meeting of the Deutsche Physiologische Gesellschaft (Korf et al. 1981 a) and the 76th Meeting of the Anatomische Gesellschaft (Korf et al. 1981 b)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korf, H.W., Simon-Oppermann, C. & Simon, E. Afferent connections of physiologically identified neuronal complexes in the paraventricular nucleus of conscious Pekin ducks involved in regulation of salt- and water-balance. Cell Tissue Res. 226, 275–300 (1982). https://doi.org/10.1007/BF00218359

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218359

Key words

Navigation