Skip to main content
Log in

Internuclear connections between the pretectum and the accessory optic system in Salamandra salamandra

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Application of horseradish peroxidase into the posterior thalamic and basal optic neuropils of Salamandra salamandra (L.) revealed strong reciprocal connections between the pretectum and the accessory optic system. Pretectal neurons located within the periventricular gray matter project to the basal optic neuropil distributing their terminals over the whole extent of this neuropil. A well developed nucleus of the basal optic neuropil, with its neurons within and medial to this neuropil, projects to the posterior thalamic neuropil. Its terminals appear to be located selectively within the core of the posterior thalamic neuropil which receives no ipsilateral retinal afferents.

The pretectum and the accessory optic system are reciprocally connected to a ventral tegmental nucleus, which has not previously been described in urodeles. This nucleus is located immediately dorsal to the oculomotor and trochlear nuclei and extends from the oculomotor root to the middle of the trochlear nucleus.

Dendrites of the nucleus of Darkschewitsch reach the posterior thalamic neuropil but mainly enter the rostral tegmental neuropil, while the dendrites of the nucleus of the medial longitudinal fasciculus ramify within the basal optic neuropil and the anterior tegmental neuropil with minor branches in the caudal posterior thalamic neuropil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berson DM, Graybiel AM (1980) Some cortical and subcortical fiber projections to the accessory optic nuclei in the cat. Neuroscience 5:2203–2217

    Google Scholar 

  • Blanks RHI, Giolli RA, Pham SV (1982) Projections of the medial terminal nucleus of the accessory optic system upon pretectal nuclei in the pigmented rat. Exp Brain Res 48:228–237

    Google Scholar 

  • Brecha N, Karten HJ, Hunt SP (1980) Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study. J Comp Neurol 189:615–670

    Google Scholar 

  • Cochran G, Dieringer N, Precht W (1984) Basic optokinetic-ocular reflex pathway in the frog. J Neurosci 4:43–57

    Google Scholar 

  • Collewijn H (1975) Oculomotor areas in the rabbit's midbrain and pretectum. J Comp Neurol 6:3–22

    Google Scholar 

  • Collewijn H (1980) Sensory control of optokinetic nystagmus in the rabbit. Trends Neurosci 11:277–280

    Google Scholar 

  • Donkelaar HJ ten, Boer-van Huizen R de, Schouten FTM, Eggen SIH (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neuroscience 6:2297–2312

    Google Scholar 

  • Ewert JP (1971) Single unit response of the toad's (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74:81–102

    Google Scholar 

  • Ewert JP, Hock FJ, Wietersheim A von (1974) Thalamus, Praetectum, Tectum: Retinale Topographie and physiologische Interaktion bei der Kröte Bufo bufo (L.). J Comp Physiol 92:343–356

    Google Scholar 

  • Finkenstädt T (1980) Disinhibition of prey-catching in the salamander following thalamic-pretectal lesions. Naturwissenschaften 67:471

    Google Scholar 

  • Finkenstädt T, Ebbesson SOE, Ewert JP (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell Tissue Res 234:39–55

    Google Scholar 

  • Fite KV, Scalia F (1976) Central visual pathways in the frog. In: KV Fite (ed) The amphibian visual system. Academic Press, New York, pp 87–118

    Google Scholar 

  • Fite KV, Reiner A, Hunt SP (1979) Optokinetic nystagmus and the accessory optic system of pigeon and turtle. Brain Behav Evol 16:192–202

    Google Scholar 

  • Fritzsch B (1980) Retinal projections in European Salamandridae. Cell Tissue Res 213:325–341

    Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983) Optokinetic nystagmus in the pigeon (Columba livid) II. Role of the pretectal nucleus of the accessory optic system (AOS). Exp Brain Res 50:237–247

    Google Scholar 

  • Giolli RA, Blanks RHI, Torigoe Y (1984) Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. J Comp Neurol 227:228–251

    Google Scholar 

  • Hanker JS, Yates PE, Metz CB, Rustioni A (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J 9:789–792

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander Ambystoma tigrinum. The University of Chicago Press, Chicago

    Google Scholar 

  • Hoffmann KP, Schoppmann A (1981) A quantitative analysis of the direction-specific response of neurons in the cat's nucleus of the optic tract. Exp Brain Res 42:146–157

    Google Scholar 

  • Ingle DJ (1980) Some effects of pretectum lesions on the frog's detection of stationary objects. Behav Brain Res 1:139–163

    Google Scholar 

  • Jakway JS, Riss W (1972) Retinal projections in the tiger salamander Ambystoma tigrinum. Brain Behav Evol 5:401–442

    Google Scholar 

  • Katte O, Hoffmann KP (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57

    Google Scholar 

  • Lázár G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hungaria 20:171–183

    Google Scholar 

  • Lázár G (1973) Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5:443–460

    Google Scholar 

  • Lázár G (1983) Transection of the basal optic root in the frog abolishes vertical optokinetic head-nystagmus. Neurosci Lett 43:7–11

    Google Scholar 

  • Lázár G, Alkonyi B, Toth B (1983) Re-investigation of the role of the accessory optic system and pretectum in the horizontal optokinetic head nystagmus of the frog. Lesion experiments. Acta Biol Hung 34:385–393

    Google Scholar 

  • Manteuffel G (1982) The accessory optic system in the newt, Triturus cristatus: Unitary response properties from the basal optic neuropil. Brain Behav Evol 21:175–184

    Google Scholar 

  • Manteuffel G (1984) Electrophysiology and anatomy of direction specific pretectal units in Salamandra salamandra. Exp Brain Res 54:415–425

    Google Scholar 

  • Manteuffel G (in press) Monocular and binocular optic inputs to salamander pretectal neurons: intracellular recording and HRP-labelling study. Brain Behav Evol

  • Manteuffel G, Petersen J, Himstedt W (1983) Optic nystagmus and nystagmogen centers in the European fire salamander (Salamandra salamandra). Zool Jb Physiol 87:113–125

    Google Scholar 

  • Mesulam M-M, Hegarty E, Barbas H, Carson KA, Gower EC, Knapp AG, Moss MB, Mufson EJ (1980) Additional factors influencing sensitivity in the tetramethyl benzidine method for horseradish peroxidase neurohistochemistry. J Histochem Cytochem 28:1255–1259

    Google Scholar 

  • Montgomery N, Fite KV, Bengston L (1981) The accessory optic system of Rana pipiens: Neuroanatomical connections and intrinsic organization. J Comp Neurol 203:595–612

    Google Scholar 

  • Montgomery N, Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: A functional analysis. Brain Behav Evol 21:137–150

    Google Scholar 

  • Montgomery N, Fite KV, Grigonis AM (1985) The pretectal nucleus (lentiformis mesencephali) of Rana pipiens. J Comp Neurol 234:264–275

    Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213:262–278

    Google Scholar 

  • Nieuwenhuys R, Opdam P (1976) Brain stem. Structure of the brain stem. In: R. Llinas, W. Precht (eds) Frog neurobiology, pp 811–855

  • Opdam P, Nieuwenhuys R (1976) Topological analysis of the brain stem of the axolotl Ambystoma mexicanum. J Comp Neurol 165:285–306

    Google Scholar 

  • Rettig G, Roth G (1982) Afferent visual projections in three species of lungless salamanders (Family Plethodontidae). Neurosci Lett 31:221–224

    Google Scholar 

  • Scalia F, Gregory K (1970) Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain Behav Evol 3:16–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naujoks-Manteuffel, C., Manteuffel, G. Internuclear connections between the pretectum and the accessory optic system in Salamandra salamandra . Cell Tissue Res. 243, 595–602 (1986). https://doi.org/10.1007/BF00218067

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218067

Key words

Navigation