Skip to main content
Log in

Close encounters among flying locusts produce wing-beat coupling

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Any flying animal leaves behind a wake of turbulent air. Thus, a closely tailing neighbor may be buffeted by complex aerodynamic forces. We report here that pairs of tethered locusts (Locusta migratoria) flying in tandem in a wind tunnel, couple their wing-beats to one another. Wind-receptive hairs on the rear partner's head provide the main sensory input that produces the coupling. The phase angle of coupling depends upon the distance between the individuals. By phase-coupling to a forward neighbor's wake, a locust may turn this turbulence to its own aerodynamic advantage. Moreover, within a large swarm local groups of locusts may fly in a functionally integrated manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon J, Möhl B (1983) The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. I. Its activity in straight flight. J Comp Physiol 150:439–452

    Google Scholar 

  • Baker PS, Gewecke M, Cooter RJ (1981) The natural flight of the migratory locust, Locusta migratoria L. III. Wing-beat frequency, flight speed and attitude. J Comp Physiol 141:233–237

    Google Scholar 

  • Baker PS, Gewecke M, Cooter RJ (1984) Flight orientation of swarming Locusta migratoria. Physiol Entomol 9:247–252

    Google Scholar 

  • Berger M (1972) Formationsflug ohne Phasenbeziehung der Flügelschläge. J Ornithol 113:161–169

    Google Scholar 

  • Brodsky AK (1991) Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J Exp Biol 161:77–95

    Google Scholar 

  • Brodsky AK, Ivanov VD (1984) The role of vortices in insect flight. Zool Zhurn Moskau 63(2): 197–208 (in Russian)

    Google Scholar 

  • Camhi JM, Tom W, Volman S (1978) The escape behavior of the cockroach Periplaneta americana. II. Detection of natural predators by air displacement. J Comp Physiol 128:203–212

    Google Scholar 

  • Cooter RJ (1989) Swarm flight behavior in flies and locusts. In: Goldsworthy GJ, Wheeler CH (eds) Insecl flight. CRC Press, Boca Raton, pp 165–203

    Google Scholar 

  • Gettrup E (1962) Thoracic proprioceptors in the flight system of locusls. Nature 193:498–499

    Google Scholar 

  • Gewecke M (1972) Antennen und Stirn-Scheitelhaare von Locusta migratoria L. als Luftströmungs-Sinnesorgane bei der Flugsleuerung. J Comp Physiol 80:57–94

    Google Scholar 

  • Gewecke M (1975) The influence of Ihe air-current sense organs on Ihe flighl behaviour of Locusta migratoria. J Comp Physiol 103:79–95

    Google Scholar 

  • Gewecke M, Kutsch W (1979) Developmenl of flighl behaviour in maturing adults of Locusta migratoria: I. Flight performance and wing-stroke parameters. J Insect Physiol 25:249–253

    Google Scholar 

  • Gewecke M, Philippen J (1978) Control of horizontal flight-course by air-current sense organs in Locusta migratoria. Physiol Entomol 3:43–52

    Google Scholar 

  • Grodnitsky DL, Morozov PP (1992) Flow visualization experiments on tethered flying green lacewings Chrysopa dasyptera. J Exp Biol 169:143–163

    Google Scholar 

  • Gunn DL, Perry FC, Seymour WG, Telford TM, Wright EN, Yeo D (1948) Behaviour of the Desert locust in relation to aircraft spraying. Anti-Locust Bull 3:1–70

    Google Scholar 

  • Hainsworth FR (1987) Precision and dynamics of positioning by Canada geese flying in formation. J Exp Biol 128:445–462

    Google Scholar 

  • Higdon JJL, Corrsin S (1978) Induced drag of a bird flock. Am Natur 112:727–744

    Google Scholar 

  • Horsmann U, Heinzel H-G, Wendler G (1983) The phasic influence of self-generated air current modulations on the locust flight motor. J Comp Physiol 150:427–438

    Google Scholar 

  • Hummel D (1983) Aerodynamic aspects of formation flight in birds. J Theor Biol 104:321–347

    Google Scholar 

  • Kutsch W (1989) Development of the flight motor pattern. In: Goldsworthy GJ, Wheeler CH (eds) Insect flight. CRC Press, Boca Raton, pp 51–73

    Google Scholar 

  • Kutsch W, Stevenson P (1981) Time-correlated flights of juvenile and mature locusts: a comparison between free and tethered animals. J Insect Physiol 27:455–459

    Google Scholar 

  • Libersat F (1992) Modulation of flight by the giant interneurons of the cockroach. J Comp Physiol A 170:379–392

    Google Scholar 

  • Lissaman PBS, Shollenberger CA (1970) Formation flight of birds. Science 168:1003–1005

    Google Scholar 

  • Nachtigall W (1970) Phasenbeziehungen der Flügelschläge von Gänsen während des Verbandflugs in Keilformation. Z Vergl Physiol 67:414–422

    Google Scholar 

  • Nachtigall W (1986) Bewegungsphysiologie; Laufen-Schwimmen-Fliegen. Hdb Zool Vol IV, Arthropoda: Insecta. de Gruyter, Berlin

    Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Berlin

    Google Scholar 

  • Pearson KG, Ramirez JM (1990) Influence of input from the forewing stretch receptors on motoneurones in flying locusts. J Exp Biol 151:317–340

    Google Scholar 

  • Pearson KG, Reye DN, Robertson RM (1983) Phase-dependent influences of wing stretch receptors on flight rhythm in the locust. J Neurophysiol 49:1168–1181

    CAS  PubMed  Google Scholar 

  • Pflüger H-J, Tautz J (1982) Air movement sensitive hairs and interneurons in Locusta migratoria. J Comp Physiol 145:369–380

    Google Scholar 

  • Rainey RC (1976) Flight behaviour and features of the atmospheric environment. In: Rainey RC (ed) Insect flight. Blackwell, Oxford, pp 75–112

    Google Scholar 

  • Rainey RC (1989) Migration and meteorology. Clarendon, Oxford

    Google Scholar 

  • Rayner JMV (1979) A new approach to animal flight mechanics. J Exp Biol 80:17–54

    Google Scholar 

  • Reichert H, Rowell CHF (1986) Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control. Trends Neurosci 9:281–283

    Google Scholar 

  • Snodgrass RE (1929) The thoracic mechanism of a grasshopper, and its antecedents. Smiths Misc Coll 82:1–112

    Google Scholar 

  • Waldron I (1968) The mechanism of coupling of the locust flight oscillator to oscillatory inputs. Z Vergl Physiol 57:331–347

    Google Scholar 

  • Weis-Fogh T (1956a) Biology and physics of locust flight. II. Flight performance of the desert locust (Schistocerca gregaria). Phil Trans R Soc London B 239:459–510

    Google Scholar 

  • Weis-Fogh T (1956b) Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight. Phil Trans R Soc London B 239:553–584

    Google Scholar 

  • Wendler G (1974) The influence of proprioceplive feedback on locust flight co-ordination. J Comp Physiol 88:173–200

    Google Scholar 

  • Wilson DM, Weis-Fogh T (1962) Patterned activily of co-ordinated motor units, studied in flying locusts. J Exp Biol 39:643–667

    Google Scholar 

  • Wilson DM, Wyman RJ (1965) Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys J 5:121–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutsch, W., Camhi, J. & Sumbre, G. Close encounters among flying locusts produce wing-beat coupling. J Comp Physiol A 174, 643–649 (1994). https://doi.org/10.1007/BF00217385

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217385

Key words

Navigation