Skip to main content
Log in

Waveform generation in Rhamphichthys rostratus (L.) (Teleostei, Gymnotiformes)

The electric organ and its spatiotemporal activation pattern

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Rhamphichthys rostratus (L.) emits brief pulses (2 ms) repeated very regularly at 50 Hz. The electric organ shows a heterogeneous distribution of the electrocyte tubes and the occurrence of three electrocyte types (caudally innervated, rostrally innervated and marginallycaudally innervated). In the sub-opercular region the electric organ consists of a pair of tubes containing only caudally innervated electrocytes. At the abdominal region the EO consists of three pairs of tubes. Each pair contains one of the described electrocyte types. The number of electrocyte tubes increases toward the tail to reach nine or ten pairs in the most caudal segments. In the intermediate region most tubes contain doubly innervated electrocytes except the ventral pair that contains caudally innervated electrocytes. The caudal 25% contains exclusively caudally innervated electrocytes. The electric organ discharge consists of five wave components (V1 to V5). Electrophysiological data are consistent with the hypothesis that V1 results from the activity of the rostral faces of rostrally innervated electrocytes. V2 results from the activities of rostral faces of marginally-caudally innervated electrocytes while V3 results from the activities of caudal faces of most electrocytes. Curarization experiments demonstrated that V4 and V5 result from action potential invasion and are not directly elicited by neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEN1:

anterior electromotor nerve 1

AEN2:

anterior electromotor nerve 2

BMB:

boraxic methylene blue

CIE:

caudally innervated electrocytes

EMF:

electromotive force

EO:

electric organ

EOD:

electric organ discharge

I :

current amplitude

MCIE:

marginally-caudally innervated electrocytes

MT:

medial tubes

PEN:

posterior electromotor nerve

R n :

internal impedance

RIE:

rostrally innervated electrocytes

Rl:

load resistor

SAT:

short abdominal tubes

V :

voltage amplitude

References

  • Albe-Fessard D, Martins-Ferreira H (1953) Rôle de la commande nerveuse dans la synchronization du fonctionnement des éléments de l'organe électrique de gymnote, Electrophorus electricus L. J Physiol (Paris) 45:533–546

    Google Scholar 

  • Bass AH (1986) Electric organs revisited. Evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York Chistester Brisbane Toronto Singapore, pp 13–70

    Google Scholar 

  • Bennett MVL (1971) Electroreception. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic Press, New York, pp 493–574

    Google Scholar 

  • Bennett MVL, Grundfest H (1959) Electrophysiology of electric organ in Gymnotus carapo. J Gen Physiol 42:1067–1104

    Google Scholar 

  • Bullock TH (1984) Understanding brains by comparing taxa. Perspect Biol Med 27:510–524

    Google Scholar 

  • Bullock TH (1986) Significance of findings on electroreception for general neurobiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York Chistester Brisbane Toronto Singapore, pp 651–672

    Google Scholar 

  • Bullock TH (1993) How are more complex brains different? One view and agenda for comparative neurobiology. Brain Behav Evol 41:88–96

    Google Scholar 

  • Caputi A, Macadar O, Trujillo-Cenóz O (1989) Waveform generation in Gymnotus carapo. III. Analysis of the fish body as an electric source. J Comp Physiol A 165:361–370

    Google Scholar 

  • Caputi A, Suva A, Macadar O (1993) Electric organ activation in Gymnotus carapo: spinal origin and peripheral mechanisms. J Comp Physiol A 173:227–232

    Google Scholar 

  • Coates CW, Cox RT, Rosemblith WA, Brown MB (1940) Propagation of the electric impulse along the organs of the electric eel, Electrophorus electricus (Linnaeus). Zoologica 25:249–256

    Google Scholar 

  • Donaldson PEK (1958) Electronic apparatus for biological research. Butterworth, London

    Google Scholar 

  • Ellis MM (1913) The gymnotoid eels of tropical America. Mem Carnegie Mus 6:109–195

    Google Scholar 

  • Fink SV, Fink W (1981) Interrelationships of the ostariophysan fishes (Teleostei). Zool J Linn Soc 72:297–353

    Google Scholar 

  • Gayet M, Meunier J (1991) Première découverte de Gymnotiformes fossiles (Pisces, Ostariophysi) dans le Miocène supérieur de Bolivie. C R Acad Sci Paris 313:471–476

    Google Scholar 

  • Hopkins CD (1983) Function and mechanisms in electroreception. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. Ann Arbor Univ of Michigan Press, pp 215–259

    Google Scholar 

  • Hopkins CD (1988) Neuroethology of electric communication. Annu Rev Neurosci 11:497–535

    Google Scholar 

  • Ihering R von (1907) Os peices de agua doce do Brazil. Rev Mus Paulista 7:258–336

    Google Scholar 

  • Kramer B, Tautz J, Markl H (1981) The electric organ discharge sound response in weakly electric fish. J Comp Physiol 143:435–441

    Google Scholar 

  • Lissmann HW, Schwassmann HO (1965) Activity rhythm of an electric fish Gymnorhamphichthys hypostomus. Z Vergl Physiol 51:153–171

    Google Scholar 

  • Lorenzo D, Velluti JC, Macadar O (1988) Electrophysiological properties of abdominal electrocytes in the weakly electric fish Gymnotus carapo. J Comp Physiol A 162:141–144

    Google Scholar 

  • Lorenzo D, Sierra F, Silva A, Macadar O (1990) Spinal mechanisms of electric organ discharge synchronization in Gymnotus carapo. J Comp Physiol A 167:447–452

    Google Scholar 

  • Macadar O (1993) Motor control of waveform generation in Gymnotus carapo. J Comp Physiol A 173:728–729

    Google Scholar 

  • Macadar O, Lorenzo D, Velluti JC (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. II. Electrophysiological properties of single electrocytes. J Comp Physiol A 165:353–360

    Google Scholar 

  • Mago-Leccia (1978) Los peces de la familia sternopygidae de Venezuela. Acta Cient Venez 29:1–89

    Google Scholar 

  • Schwassmann HO (1976) Ecology and taxonomic status of different geographic populations of Gymnorhamphichthys hypostomus Ellis (Pisces, Cypriniformes, Gymnotoidei). Biotropica 8:25–40

    Google Scholar 

  • Szabo T (1960) Quelques observations sur l'innervation de l'organe électrique de Gymnotus carapo. Arch Anat Microsc Morphol Exp 49:89–92

    Google Scholar 

  • Szabo T (1961) Les organes électriques de Gymnotus carapo. Proc K Ned Akad Wet 64:584–586

    Google Scholar 

  • Trujillo-Cenóz O, Echagüe JA (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. I. Morphology and innervation of the electric organ. J. Comp Physiol A 165:343–351

    Google Scholar 

  • Trujillo-Cenóz O, Echagüe JA, Macadar O (1984) Innervation pattern and electric organ discharge waveform in Gymnotus carapo. J Neurobiol 15:273–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputi, A., Macadar, O. & Trujillo-Cenóz, O. Waveform generation in Rhamphichthys rostratus (L.) (Teleostei, Gymnotiformes). J Comp Physiol A 174, 633–642 (1994). https://doi.org/10.1007/BF00217384

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217384

Key words

Navigation